题目描述

给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。

输入输出格式

输入格式:

第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。可能有重边。

输出格式:

包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。

输入输出样例

输入样例#1:

6 6 11

1 2 1

2 3 2

3 4 2

4 5 1

5 3 1

4 6 3

输出样例#1:

4

说明

给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。

将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。


题解

矩乘(倍增?)

如果边权都是1,把每个点都连向计数点

然后对矩阵做k次快速幂就表示路径长度<=k的路径条数

边权很小一看就可以想到拆点(\([SCOI2009]\)迷路)

对于每个点 , 拆成三个点

第一个点是实点

后两个点是虚点

因为每次转移都只能转移一步表示走一步,这一步长度为1

所以拆点后对于\((u,v,w)\)就相当于转移\(w\)次才能通过这条路径从\(u->v\)

然后再把每个实点和计数点\((n*3+1)\)连一条边方便计数

由于一条路径长度不一定等于转移次数

所以再让计数器形成一个自环

这样转移t次后统计计数器的答案表示的就是路径长度<=t的路径条数

然后如果二分路径长度然后\(check\)的话会T

所以用类似于倍增的方法

预处理出这个矩阵转移\(2^i\)次后的矩阵

每次处理\(2^i\)的矩阵完成后\(check\)一下,如果大于k个就可以停止了

然后再倍增求答案

从大往小里枚举

像倍增跳LCA那样,每当蹦到一个总路径条数<k的状态,就把当前状态更新成那个状态,并加上相应的答案

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
# define int long long
const int M = 125 ;
const int N = 70 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x * w ;
} int n , m , E , kth , Ans ;
struct Matrix {
int f[M][M] ;
inline Matrix () { memset(f , 0 , sizeof(f)) ; }
inline void Start() { for(int i = 1 ; i <= E ; i ++) f[i][i] = 1 ; }
inline friend Matrix operator * (Matrix a , Matrix b) {
Matrix temp ;
for(int i = 1 ; i <= E ; i ++)
for(int j = 1 ; j <= E ; j ++)
for(int k = 1 ; k <= E ; k ++)
temp.f[i][j] = (temp.f[i][j] + a.f[i][k] * b.f[k][j]) ;
return temp ;
}
inline bool chk() {
int ret = 0 ;
for(int i = 1 ; i <= n ; i ++) {
ret = (ret + f[i][E] - 1) ;
if(ret >= kth || ret < 0)
return true ;
}
return false ;
}
} st[N] , Now , Temp ;
# undef int
int main() {
# define int long long
n = read() ; m = read() ; kth = read() ; E = n * 3 + 1 ; st[0].f[E][E] = 1 ;
for(int i = 1 ; i <= n ; i ++) st[0].f[i][E] = st[0].f[i][i + n] = st[0].f[i + n][i + n * 2] = 1 ;
for(int i = 1 , u , v , w ; i <= m ; i ++) {
u = read() , v = read() , w = read() ;
st[0].f[u + (w - 1) * n][v] ++ ;
}
int Maxup ;
for(int i = 1 ; i <= 63 ; i ++) {
if(i == 63) { printf("-1\n") ; return 0 ; }
st[i] = st[i - 1] * st[i - 1] ;
if(st[i].chk()) { Maxup = i ; break ; }
}
Now.Start() ;
for(int i = Maxup ; i >= 0 ; i --) {
Temp = Now * st[i] ;
if(Temp.chk()) continue ;
Now = Temp ; Ans += (1LL << i) ;
}
cout << Ans << endl ;
return 0 ;
}

[POI2015]Wycieczki的更多相关文章

  1. bzoj 4386: [POI2015]Wycieczki

    bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...

  2. BZOJ4386 : [POI2015]Wycieczki

    将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...

  3. BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘

    Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...

  4. BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  5. 【bzoj4386】[POI2015]Wycieczki 矩阵乘法

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  6. BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...

  7. BZOJ4386 [POI2015]Wycieczki 矩阵+倍增

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...

  8. 【BZOJ-4386】Wycieczki DP + 矩阵乘法

    4386: [POI2015]Wycieczki Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 197  Solved: 49[Submit][Sta ...

  9. POI2015题解

    POI2015题解 吐槽一下为什么POI2015开始就成了破烂波兰文题目名了啊... 咕了一道3748没写打表题没什么意思,还剩\(BZOJ\)上的\(14\)道题. [BZOJ3746][POI20 ...

随机推荐

  1. Thinkphp5.0 的实践一

    Thinkphp5.0 的实践一 tp5.0默认没有__SELF__,需要定义, define('__SELF__',strip_tags($_SERVER['REQUEST_URI'])); tp5 ...

  2. android view自定义

    转载自:http://blog.csdn.net/iispring/article/details/50708044

  3. POJ 2240_Arbitrage

    题意: 给定一系列货币汇率,求能否从一种货币,经过一系列转换,最终转化回更高价值的该种货币. 分析: 即为求最长路并判断是否存在"正"权值回路,这里用的bellmanford算法. ...

  4. JAVA分布式架构

  5. MySQL集群方案收集

    MySQL集群是一个需要时间才能磨得出的话题,不可能一下子就全部能掌握.由于整个方案结合LVS+Keepalived这种,更加的复杂. 下面是一些主流方案的收集: MySQL双主 + Keepaliv ...

  6. apple applessd.sys error

    http://bbs.feng.com/read-htm-tid-10242622.html

  7. Spring 加载类路径外的资源文件

    原文:http://blog.csdn.net/gaofuqi/article/details/46417259 <bean id="propertyConfigurer" ...

  8. 什么是Wiki?

    Wiki一词来源于夏威夷语的“wee kee wee kee”, 发音wiki, 原本是“快点快点”的意思,被译为“维基”或“维客”.一种多人协作的写作工具.Wiki站点可以有多人(甚至任何访问者)维 ...

  9. C# 如何修改Form不能修改窗体大小

    把窗体的FormBorderSytle改一下就可以了,改成FixedSingle或者Fixed3D都可以        

  10. 使用 BenchmarkDotnet 测试代码性能 【Win10】单元测试中捕获异步方法的指定异常

    先来点题外话,清明节前把工作辞了(去 tm 的垃圾团队,各种拉帮结派.勾心斗角).这次找工作就得慢慢找了,不能急了,希望能找到个好团队,好岗位吧.顺便这段时间也算是比较闲,也能学习一下和填掉手上的坑. ...