题目描述

给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。

输入输出格式

输入格式:

第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。可能有重边。

输出格式:

包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。

输入输出样例

输入样例#1:

6 6 11

1 2 1

2 3 2

3 4 2

4 5 1

5 3 1

4 6 3

输出样例#1:

4

说明

给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。

将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。


题解

矩乘(倍增?)

如果边权都是1,把每个点都连向计数点

然后对矩阵做k次快速幂就表示路径长度<=k的路径条数

边权很小一看就可以想到拆点(\([SCOI2009]\)迷路)

对于每个点 , 拆成三个点

第一个点是实点

后两个点是虚点

因为每次转移都只能转移一步表示走一步,这一步长度为1

所以拆点后对于\((u,v,w)\)就相当于转移\(w\)次才能通过这条路径从\(u->v\)

然后再把每个实点和计数点\((n*3+1)\)连一条边方便计数

由于一条路径长度不一定等于转移次数

所以再让计数器形成一个自环

这样转移t次后统计计数器的答案表示的就是路径长度<=t的路径条数

然后如果二分路径长度然后\(check\)的话会T

所以用类似于倍增的方法

预处理出这个矩阵转移\(2^i\)次后的矩阵

每次处理\(2^i\)的矩阵完成后\(check\)一下,如果大于k个就可以停止了

然后再倍增求答案

从大往小里枚举

像倍增跳LCA那样,每当蹦到一个总路径条数<k的状态,就把当前状态更新成那个状态,并加上相应的答案

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
# define int long long
const int M = 125 ;
const int N = 70 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x * w ;
} int n , m , E , kth , Ans ;
struct Matrix {
int f[M][M] ;
inline Matrix () { memset(f , 0 , sizeof(f)) ; }
inline void Start() { for(int i = 1 ; i <= E ; i ++) f[i][i] = 1 ; }
inline friend Matrix operator * (Matrix a , Matrix b) {
Matrix temp ;
for(int i = 1 ; i <= E ; i ++)
for(int j = 1 ; j <= E ; j ++)
for(int k = 1 ; k <= E ; k ++)
temp.f[i][j] = (temp.f[i][j] + a.f[i][k] * b.f[k][j]) ;
return temp ;
}
inline bool chk() {
int ret = 0 ;
for(int i = 1 ; i <= n ; i ++) {
ret = (ret + f[i][E] - 1) ;
if(ret >= kth || ret < 0)
return true ;
}
return false ;
}
} st[N] , Now , Temp ;
# undef int
int main() {
# define int long long
n = read() ; m = read() ; kth = read() ; E = n * 3 + 1 ; st[0].f[E][E] = 1 ;
for(int i = 1 ; i <= n ; i ++) st[0].f[i][E] = st[0].f[i][i + n] = st[0].f[i + n][i + n * 2] = 1 ;
for(int i = 1 , u , v , w ; i <= m ; i ++) {
u = read() , v = read() , w = read() ;
st[0].f[u + (w - 1) * n][v] ++ ;
}
int Maxup ;
for(int i = 1 ; i <= 63 ; i ++) {
if(i == 63) { printf("-1\n") ; return 0 ; }
st[i] = st[i - 1] * st[i - 1] ;
if(st[i].chk()) { Maxup = i ; break ; }
}
Now.Start() ;
for(int i = Maxup ; i >= 0 ; i --) {
Temp = Now * st[i] ;
if(Temp.chk()) continue ;
Now = Temp ; Ans += (1LL << i) ;
}
cout << Ans << endl ;
return 0 ;
}

[POI2015]Wycieczki的更多相关文章

  1. bzoj 4386: [POI2015]Wycieczki

    bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...

  2. BZOJ4386 : [POI2015]Wycieczki

    将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...

  3. BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘

    Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...

  4. BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  5. 【bzoj4386】[POI2015]Wycieczki 矩阵乘法

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  6. BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...

  7. BZOJ4386 [POI2015]Wycieczki 矩阵+倍增

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...

  8. 【BZOJ-4386】Wycieczki DP + 矩阵乘法

    4386: [POI2015]Wycieczki Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 197  Solved: 49[Submit][Sta ...

  9. POI2015题解

    POI2015题解 吐槽一下为什么POI2015开始就成了破烂波兰文题目名了啊... 咕了一道3748没写打表题没什么意思,还剩\(BZOJ\)上的\(14\)道题. [BZOJ3746][POI20 ...

随机推荐

  1. [K/3Cloud] 在插件中为辅助资料赋值

    因为辅助资料其实是一种特殊的基础资料,其赋值方法跟基础资料类似 this.Model.SetItemValueByNumber("FAssistant1", "Ameri ...

  2. Big String(poj 2887)

    题意: 给你一个不超过1e6的字符串,和不超过2000次的操作 操作分为两种: 1.将一个字符插入到某个位置的前面 2.询问当前位置的字符 /* 块状链表模板水题(我的智商也就能做这种题了). 观察题 ...

  3. 一个Navi过程下多个DocumentCompleted事件问题的解决的方法

    7.16 Marked to Write.... 七月份马克的一篇文章了,今天才想起来把他写完,呵呵. 原本是七月份用来做微博爬虫的,后来发现新浪对机器人的检測不好绕过,连简单地訪问都会被检測出来,后 ...

  4. linux网络结构体

    一 链路层: (1)局域网(以太网ethernet): *struct eth_header:以太网头部. (ethernet/eth.c) *struct net_device:每一个网络设备都用这 ...

  5. Unity3D研究之多语言用中文做KEY

     做多语言的时候用中文做KEY绝对是有100%的优点,假设用英文表示那么代码里面给文字赋值的地方全都是英文.写的代码多了以后维护起来就没有人能看懂了,或者看起来非常费劲. 对PoolManager ...

  6. Python学习笔记17:标准库之数学相关(math包,random包)

    前面几节看得真心累.如今先来点简单easy理解的内容. 一 math包 math包主要处理数学相关的运算. 常数 math.e   # 自然常数e math.pi  # 圆周率pi 运算函数 math ...

  7. ppt五种经典字体组合

    在做ppt中常常为使用哪种字体而头疼,如今将ppt的经典字体附上.希望对大家有帮助 五种经典的字体组合 标题字体 正文字体 使用场合 方正综艺简体 微软雅黑 课题汇报.咨询报告.学术研讨等正式场合 方 ...

  8. PH_Pooled Featrues Classification MIREX 2011 Submission

    Abstract Principal Mel-Spectrum Components (Feature) Temporal Pooling Functions (Model) Single Hidde ...

  9. 用py文件调用操作系统的命名,粘包问题

    帅爆太阳的男人 1,执行代码 在py代码中去调用操作系统的命令 新的模块:subprocess, import subprocess r = subprocess().Popen( "dir ...

  10. BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho

    BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一 ...