[POI2015]Wycieczki
题目描述
给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。
输入输出格式
输入格式:
第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。可能有重边。
输出格式:
包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。
输入输出样例
输入样例#1:
6 6 11
1 2 1
2 3 2
3 4 2
4 5 1
5 3 1
4 6 3
输出样例#1:
4
说明
给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。
将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。
题解
矩乘(倍增?)
如果边权都是1,把每个点都连向计数点
然后对矩阵做k次快速幂就表示路径长度<=k的路径条数
边权很小一看就可以想到拆点(\([SCOI2009]\)迷路)
对于每个点 , 拆成三个点
第一个点是实点
后两个点是虚点
因为每次转移都只能转移一步表示走一步,这一步长度为1
所以拆点后对于\((u,v,w)\)就相当于转移\(w\)次才能通过这条路径从\(u->v\)
然后再把每个实点和计数点\((n*3+1)\)连一条边方便计数
由于一条路径长度不一定等于转移次数
所以再让计数器形成一个自环
这样转移t次后统计计数器的答案表示的就是路径长度<=t的路径条数
然后如果二分路径长度然后\(check\)的话会T
所以用类似于倍增的方法
预处理出这个矩阵转移\(2^i\)次后的矩阵
每次处理\(2^i\)的矩阵完成后\(check\)一下,如果大于k个就可以停止了
然后再倍增求答案
从大往小里枚举
像倍增跳LCA那样,每当蹦到一个总路径条数<k的状态,就把当前状态更新成那个状态,并加上相应的答案
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
# define int long long
const int M = 125 ;
const int N = 70 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x * w ;
}
int n , m , E , kth , Ans ;
struct Matrix {
int f[M][M] ;
inline Matrix () { memset(f , 0 , sizeof(f)) ; }
inline void Start() { for(int i = 1 ; i <= E ; i ++) f[i][i] = 1 ; }
inline friend Matrix operator * (Matrix a , Matrix b) {
Matrix temp ;
for(int i = 1 ; i <= E ; i ++)
for(int j = 1 ; j <= E ; j ++)
for(int k = 1 ; k <= E ; k ++)
temp.f[i][j] = (temp.f[i][j] + a.f[i][k] * b.f[k][j]) ;
return temp ;
}
inline bool chk() {
int ret = 0 ;
for(int i = 1 ; i <= n ; i ++) {
ret = (ret + f[i][E] - 1) ;
if(ret >= kth || ret < 0)
return true ;
}
return false ;
}
} st[N] , Now , Temp ;
# undef int
int main() {
# define int long long
n = read() ; m = read() ; kth = read() ; E = n * 3 + 1 ; st[0].f[E][E] = 1 ;
for(int i = 1 ; i <= n ; i ++) st[0].f[i][E] = st[0].f[i][i + n] = st[0].f[i + n][i + n * 2] = 1 ;
for(int i = 1 , u , v , w ; i <= m ; i ++) {
u = read() , v = read() , w = read() ;
st[0].f[u + (w - 1) * n][v] ++ ;
}
int Maxup ;
for(int i = 1 ; i <= 63 ; i ++) {
if(i == 63) { printf("-1\n") ; return 0 ; }
st[i] = st[i - 1] * st[i - 1] ;
if(st[i].chk()) { Maxup = i ; break ; }
}
Now.Start() ;
for(int i = Maxup ; i >= 0 ; i --) {
Temp = Now * st[i] ;
if(Temp.chk()) continue ;
Now = Temp ; Ans += (1LL << i) ;
}
cout << Ans << endl ;
return 0 ;
}
[POI2015]Wycieczki的更多相关文章
- bzoj 4386: [POI2015]Wycieczki
bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...
- BZOJ4386 : [POI2015]Wycieczki
将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...
- BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘
Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...
- BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- 【bzoj4386】[POI2015]Wycieczki 矩阵乘法
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...
- BZOJ4386 [POI2015]Wycieczki 矩阵+倍增
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...
- 【BZOJ-4386】Wycieczki DP + 矩阵乘法
4386: [POI2015]Wycieczki Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 197 Solved: 49[Submit][Sta ...
- POI2015题解
POI2015题解 吐槽一下为什么POI2015开始就成了破烂波兰文题目名了啊... 咕了一道3748没写打表题没什么意思,还剩\(BZOJ\)上的\(14\)道题. [BZOJ3746][POI20 ...
随机推荐
- Window Pains(poj 2585)
题意: 一个屏幕要同时打开9个窗口,每个窗口是2*2的矩阵,整个屏幕大小是9*9,每个窗口位置固定. 但是是否被激活(即完整显示出来)不确定. 给定屏幕状态,问是否可以实现显示. 分析:拓扑排序,把完 ...
- HDU4325 树状数组+离散化
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4325 Flowers Time Limit: 4000/2000 MS (Java/Others) ...
- [bzoj3489]A simple rmq problem_KD-Tree
A simple rmq problem 题目大意:给定一个长度为$n$的序列,给出$m$个询问:在$[l,r]$之间找到一个在这个区间里只出现过一次的最大的数. 注释:$1\le n\le 10^5 ...
- TensorFlow-GPU环境配置之四——配置和编译TensorFlow
首先,使用configure进行配置 配置完成后,使用bazel编译retrain命令,编译命令中加入--config=cuda即为启用GPU 编译进行中... 编译完成 编译完成后,调用retrai ...
- 使用maven时,如何修改JVM的配置参数;maven命令执行时到底消耗多少内存?
maven是使用java启动的,因此依赖JVM,那么如何修改JVM参数? MAVEN_OPTS 在系统的环境变量中,设置MAVEN_OPTS,用以存放JVM的参数,具体设置的步骤,参数示例如下: MA ...
- 电脑无线WIFI怎么共享给手机
点屏幕右下角的那个小电脑(网络)标志,里面有打开网络和共享中. 选左上角管理无线网络——选择添加. 选择创建临时网络——点击下一步——输入网络名称. 安全类型选择WEP——安全密钥为10位数字——然后 ...
- java的输入输出流(一)
java中i/o流是java中核心的一部分,曾经学过.可是理解不够深入,渐渐的也就忘了,如今在从新学习下java的io处理,写下我学习的笔记.便于记忆,和总结归纳: 本文原创,转载请注明:http:/ ...
- C - The C Answer (2nd Edition) - Exercise 1-5
/* Modify the temperature conversion program to print the table in reverse order, that is, from 300 ...
- vim note(5)
.vimrc 的设置 $HOME/.vimrc 的普通设置,例如以下. set nocompatible "" not compatible with VI "" ...
- 《深入理解Android 卷III》第四章 深入理解WindowManagerService
<深入理解Android 卷III>即将公布,作者是张大伟.此书填补了深入理解Android Framework卷中的一个主要空白.即Android Framework中和UI相关的部分. ...