Description

让我们考虑一个在m x 1 的板子上玩的游戏,板子被从1 到 m编号. 现在板子上有n 个棋子, 每个都严格占据板子上的一个格子. 没有一个棋子占据格子m. 每个单独的移动遵循以下原则: 移动的人选择一个棋子把它移动到比它大的格子中第一个未被占领的格子里去. 两个选手交替移动, 谁先占据格子m, 谁赢.下面是一个例子(m = 7), 一个选手可以把2 移到 4, 把3 移到 4 或者把6 移动到 7.



我们说当前选手的移动是winning当且仅当他移动以后令一选手无论如何都无法赢他.

我们想知道先手有多少个移动是winning的.

Input

第一行有两个数m and n (2 <= m <= 109, 1 <= n <= 106, n < m) .

然后接下来n个上升的整数表示初始被占据的格子编号.

Output

输出先手有多少移动是winning的.

Sample Input

For the following input data1:

5 2

1 3

For the following input2 data:

5 2

2 3

Sample Output

the correct answer1 is:

1

the correct answer2 is:

0


本题看上去情况较多,有点复杂,但其实本题是Staircase Nim(阶梯Nim)的一个变种,我们只需要一些转换便可将其变成Staircase Nim。(Staircase Nim请参考浅谈算法——博弈论中的例8)

本题显然只能将石子移到m-2上,谁先移到m-1谁输。我们考虑将其转化,连续的一段石子是其后面一个阶梯上的石子,两个连续的一堆间隔的空阶梯数是空格数。

肯定要加优化,也就是略去一些空阶梯,否则\(10^9\)直接炸飞。细节巨多……

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
const int N=1e6;
int val[N+10],step[N+10];
int main(){
int m=read(),n=read(),tmp=0,tot=0,ans=0;
for (int i=1;i<=n;i++) val[i]=read();
if (val[n]==m-1){
ans=1;
for (int i=n-1;i&&val[i+1]-val[i]==1;i--) ans++;
printf("%d\n",ans);
return 0;
}
val[n+1]=m-1;
for (int i=n;i;i--)
if (val[i+1]-val[i]==1) step[tot]++;
else if (val[i+1]-val[i]==2) step[++tot]=1;
else if ((val[i+1]-val[i]-1)&1) tot+=3,step[tot]=1;
else tot+=2,step[tot]=1;
for (int i=1;i<=tot;i+=2) tmp^=step[i];
if (tmp){
for (int i=1;i<=tot;i+=2) if ((step[i]^tmp)<step[i]) ans++;
for (int i=2;i<=tot;i+=2) if ((step[i-1]^tmp)>step[i-1]&&(step[i-1]^tmp)<=step[i-1]+step[i]) ans++;
printf("%d\n",ans);
}else putchar('0');
return 0;
}

[POI2004]GRA的更多相关文章

  1. bzoj2066: [Poi2004]Gra

    Description 让我们考虑一个在m x 1 的板子上玩的游戏,板子被从1 到 m编号. 现在板子上有n 个棋子, 每个都严格占据板子上的一个格子. 没有一个棋子占据格子m. 每个单独的移动遵循 ...

  2. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  3. 【BZOJ2073】[POI2004]PRZ 状压DP

    [BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...

  4. BZOJ 2073: [POI2004]PRZ( 状压dp )

    早上这道题没调完就去玩NOI网络同步赛了.... 状压dp , dp( s ) 表示 s 状态下所用的最短时间 , 转移就直接暴力枚举子集 . 可以先预处理出每个状态下的重量和时间的信息 . 复杂度是 ...

  5. Góra urządzenia z dwoma zwiększyć moc może sprawić

    Zaprojektowany z rzeczywistym komfortu i łatwości od sportowca w swoim umyśle, kolejna edycja ze wzr ...

  6. BZOJ_2068_[Poi2004]SZP_树形DP

    BZOJ_2068_[Poi2004]SZP_树形DP Description Byteotian 中央情报局 (BIA) 雇佣了许多特工. 他们每个人的工作就是监视另一名特工. Byteasar 国 ...

  7. BZOJ_2073_[POI2004]PRZ_状压DP

    BZOJ_2073_[POI2004]PRZ_状压DP 题意: 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍在桥上 ...

  8. 2073: [POI2004]PRZ

    2073: [POI2004]PRZ Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 284  Solved: 213[Submit][Status][D ...

  9. 2069: [POI2004]ZAW

    2069: [POI2004]ZAW 链接 题意: 给定一张带权图(边是双向的,但不同方向长度不同).求从1出发,至少经过除1外的一个点,再回到1的最短路.点和边不能重复经过. n≤5000,m≤10 ...

随机推荐

  1. 【.Net Core 学习系列】-- 自定义错误页面在IE浏览器中不能正常显示

    测试场景: 1. 新建.Net Core Web项目 2. 选择模板: 3. 修改Error页面代码:(去掉母版页并修改页面显示信息) 4. 修改[ASPNETCORE_ENVIRONMENT],并抛 ...

  2. Linux 快照

    10个方法助你轻松完成Linux系统恢复 提交 我的留言 加载中 已留言 这也就是为什么系统恢复功能会让人感觉如此神奇.你可以很快地重新回到工作中去,就像什么事情都没有发生一样,也不用去管造成系统故障 ...

  3. [wxWidgets]_[0基础]_[不常见但有用的类wxCmdLineParser]

    场景: 1. 有时候须要构造命令行字符串传递給函数调用,比方CreateProcess,假设參数是动态的,那么就得使用类似std::vector<string>加入单个參数,之后拼接为一个 ...

  4. Android - 渠道号(vender)

    渠道号(vender) 本文地址: http://blog.csdn.net/caroline_wendy Android的apk公布,须要统计各个渠道(vendor)的激活数.就能够使用vendor ...

  5. 《coredump问题原理探究》Linux x86版7.9节list相关的iterator对象

    这一节.看一下list的iterator对象在内存的布局 1 #include <list> 2 3 void init( std::list<int>& lst ) ...

  6. C语言细节笔记2

    C语言常见问题笔记:    1. 指针的声明     char * p1, p2;  p1 是一个指向char类型的指针,而p2是一个char类型变量  这是由于 * 并不是基本类型的一部分,而是包含 ...

  7. 【iOS系列】-oc中的集合类

    OC中的集合有:NSArray 数组 NSDictionary 字典 NSSet 集合 第一:NSArrary 1.1:集合的基本方法 //1.创建集合 //NSArray 是不可变数组,一旦创建完成 ...

  8. mysql05---游标

    drop procedure p12$ //删除存储过程 //游标cursor,一条sql对应n条资源,取出资源的接口/句柄就是cursor, 一条sql产生的n条结果不是一次性全部输出,而是返回一个 ...

  9. Gradle 安装

    Gradle介绍 Gradle是一个基于JVM的构建工具,它提供了: 像Ant一样,通用灵活的构建工具 可以切换的,基于约定的构建框架 强大的多工程构建支持 基于Apache Ivy的强大的依赖管理 ...

  10. Javaweb项目中文乱码

    Javaweb项目中文乱码 一.了解常识: 1.UTF-8国际编码,GBK中文编码.GBK包含GB2312,即如果通过GB2312编码后可以通过GBK解码,反之可能不成立; 2.web tomcat: ...