Twitter的分布式自增ID算法snowflake(雪花算法) C#和Java版
概述
分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,
但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。
有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。
而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,
因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。
结构
snowflake的结构如下(每部分用-分开):
0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
第一位为未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年),然后是5位datacenterId和5位
workerId(10位的长度最多支持部署1024个节点) ,最后12位是毫秒内的计数(12位的计数顺序号支持每个节
点每毫秒产生4096个ID序号)
一共加起来刚好64位,为一个Long型。(转换成字符串后长度最多19)
snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和
workerId作区分),并且效率较高。经测试snowflake每秒能够产生26万个ID
C#
public class IdWorker
{
//机器ID
private static long workerId;
private static long twepoch = 687888001020L; //唯一时间,这是一个避免重复的随机量,自行设定不要大于当前时间戳
private static long sequence = 0L;
private static int workerIdBits = 4; //机器码字节数。4个字节用来保存机器码(定义为Long类型会出现,最大偏移64位,所以左移64位没有意义)
public static long maxWorkerId = -1L ^ -1L << workerIdBits; //最大机器ID
private static int sequenceBits = 10; //计数器字节数,10个字节用来保存计数码
private static int workerIdShift = sequenceBits; //机器码数据左移位数,就是后面计数器占用的位数
private static int timestampLeftShift = sequenceBits + workerIdBits; //时间戳左移动位数就是机器码和计数器总字节数
public static long sequenceMask = -1L ^ -1L << sequenceBits; //一微秒内可以产生计数,如果达到该值则等到下一微妙在进行生成
private long lastTimestamp = -1L;
/// <summary>
/// 机器码
/// </summary>
/// <param name="workerId"></param>
public IdWorker(long workerId)
{
if (workerId > maxWorkerId || workerId < 0)
throw new Exception(string.Format("worker Id can't be greater than {0} or less than 0 ", workerId));
IdWorker.workerId = workerId;
}
public long nextId()
{
lock (this)
{
long timestamp = timeGen();
if (this.lastTimestamp == timestamp)
{ //同一微妙中生成ID
IdWorker.sequence = (IdWorker.sequence + 1) & IdWorker.sequenceMask; //用&运算计算该微秒内产生的计数是否已经到达上限
if (IdWorker.sequence == 0)
{
//一微妙内产生的ID计数已达上限,等待下一微妙
timestamp = tillNextMillis(this.lastTimestamp);
}
}
else
{ //不同微秒生成ID
IdWorker.sequence = 0; //计数清0
}
if (timestamp < lastTimestamp)
{ //如果当前时间戳比上一次生成ID时时间戳还小,抛出异常,因为不能保证现在生成的ID之前没有生成过
throw new Exception(string.Format("Clock moved backwards. Refusing to generate id for {0} milliseconds",
this.lastTimestamp - timestamp));
}
this.lastTimestamp = timestamp; //把当前时间戳保存为最后生成ID的时间戳
long nextId = (timestamp - twepoch << timestampLeftShift) | IdWorker.workerId << IdWorker.workerIdShift | IdWorker.sequence;
return nextId;
}
}
/// <summary>
/// 获取下一微秒时间戳
/// </summary>
/// <param name="lastTimestamp"></param>
/// <returns></returns>
private long tillNextMillis(long lastTimestamp)
{
long timestamp = timeGen();
while (timestamp <= lastTimestamp)
{
timestamp = timeGen();
}
return timestamp;
}
/// <summary>
/// 生成当前时间戳
/// </summary>
/// <returns></returns>
private long timeGen()
{
return (long)(DateTime.UtcNow - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;
}
}
C#调用
IdWorker idworker = new IdWorker(1);
for (int i = 0; i < 1000; i++)
{
Response.Write(idworker.nextId() + "<br/>");
}
java
public class IdWorker {
private final long workerId;
private final static long twepoch = 1288834974657L;
private long sequence = 0L;
private final static long workerIdBits = 4L;
public final static long maxWorkerId = -1L ^ -1L << workerIdBits;
private final static long sequenceBits = 10L;
private final static long workerIdShift = sequenceBits;
private final static long timestampLeftShift = sequenceBits + workerIdBits;
public final static long sequenceMask = -1L ^ -1L << sequenceBits;
private long lastTimestamp = -1L;
public IdWorker(final long workerId) {
super();
if (workerId > this.maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format(
"worker Id can't be greater than %d or less than 0",
this.maxWorkerId));
}
this.workerId = workerId;
}
public synchronized long nextId() {
long timestamp = this.timeGen();
if (this.lastTimestamp == timestamp) {
this.sequence = (this.sequence + 1) & this.sequenceMask;
if (this.sequence == 0) {
System.out.println("###########" + sequenceMask);
timestamp = this.tilNextMillis(this.lastTimestamp);
}
} else {
this.sequence = 0;
}
if (timestamp < this.lastTimestamp) {
try {
throw new Exception(
String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds",
this.lastTimestamp - timestamp));
} catch (Exception e) {
e.printStackTrace();
}
}
this.lastTimestamp = timestamp;
long nextId = ((timestamp - twepoch << timestampLeftShift))
| (this.workerId << this.workerIdShift) | (this.sequence);
System.out.println("timestamp:" + timestamp + ",timestampLeftShift:"
+ timestampLeftShift + ",nextId:" + nextId + ",workerId:"
+ workerId + ",sequence:" + sequence);
return nextId;
}
private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
}
private long timeGen() {
return System.currentTimeMillis();
}
//调用
public static void main(String[] args){
IdWorker worker2 = new IdWorker(2);
System.out.println(worker2.nextId());
}
}
转自:https://www.jianshu.com/p/521dde97d3aa
Twitter的分布式自增ID算法snowflake(雪花算法) C#和Java版的更多相关文章
- 详解Twitter开源分布式自增ID算法snowflake(附演算验证过程)
详解Twitter开源分布式自增ID算法snowflake,附演算验证过程 2017年01月22日 14:44:40 url: http://blog.csdn.net/li396864285/art ...
- 分布式ID生成器 snowflake(雪花)算法
在springboot的启动类中引入 @Bean public IdWorker idWorkker(){ return new IdWorker(1, 1); } 在代码中调用 @Autowired ...
- Twitter的分布式自增ID算法snowflake
snowflake 分布式场景下获取自增id git:https://github.com/twitter/snowflake 解读: http://www.cnblogs.com/relucent/ ...
- 分布式主键解决方案之--Snowflake雪花算法
0--前言 对于分布式系统环境,主键ID的设计很关键,什么自增intID那些是绝对不用的,比较早的时候,大部分系统都用UUID/GUID来作为主键,优点是方便又能解决问题,缺点是插入时因为UUID/G ...
- Twitter的分布式自增ID算法snowflake (Java版)
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...
- Twitter的分布式自增ID算法snowflake(雪花算法) - C#版
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的.有些时候我们希望能使用一种简 ...
- UUID实现之一twitter的分布式自增IDsnowflake算法
Twitter的分布式自增ID算法snowflake (Java版) 概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点 ...
- Twitter分布式自增ID算法snowflake原理解析
以JAVA为例 Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个 ...
- Twitter分布式自增ID算法snowflake原理解析(Long类型)
Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个Long类型的6 ...
- 分布式自增ID算法-Snowflake详解
1.Snowflake简介 互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并 ...
随机推荐
- gif 制作
gif 制作 博文中使用 gif 有时比纯粹的图片更明了.比如展示"墨刀"中的动画效果: 录制视频 首先利用录制视频,例如使用在线录制工具 vizard. Tip:需要花费2分钟手 ...
- Centos7的KVM安装配置详解
KVM和虚拟化 虚拟化有几种类型: 完全虚拟化(Full virtualization), 虚机使用原始版本的操作系统, 直接与CPU通信, 是速度最快的虚拟化. 半虚拟化(Paravirtualiz ...
- 使用JS访问本地数据库
1 前言 有时候,数据业务比较大,比如查询百万级的数据,如果使用JSP查询数据库,JSP的返回结果一般放在域名后面返回给客户端,而返回结果的长度是有限制的,数据过长可能会丢失部分数据:另一方面数据量大 ...
- CSS实现展开动画
CSS实现展开动画 展开收起效果是比较常见的一种交互方式,通常的做法是控制display属性值在none和其它值之间切换,虽说功能可以实现,但是效果略显生硬,所以会有这样的需求--希望元素展开收起能具 ...
- 解决putty连接报 connection refused
Ubuntu中换个速度快点的源后 执行 $sudo apt-get install openssh-server 安装ssh协议 执行ifconfig显示Ubuntu的ip地址 xp中用putty输入 ...
- Spring Boot图书管理系统项目实战-7.借阅图书
导航: pre: 6.图书管理 next:8.续借图书 只挑重点的讲,具体的请看项目源码. 1.项目源码 需要源码的朋友,请捐赠任意金额后留下邮箱发送:) 2.页面设计 2.1 bookBorrow ...
- base::AtExitManager 和 base::Singleton 的结合使用
单例模式(Singleton)也称为单件模式,其意图是保证一个类仅有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享.有很多地方需要这样的功能模块,如系统的日志输出,GUI 应用必须是 ...
- Oracle 插入数据报错 ORA-00918
1. 报错内容 ErrorCode = 918, SQLState = 23000, Details = ORA-00918: column 'TO_DATE('2023-12-1809:13:45' ...
- You can't specify target table for update in FROM clause
mysql中You can't specify target table for update in FROM clause错误的意思是说,不能先select出同一表中的某些值,再update这个表( ...
- C++ //常用算术生成算法 //#include<numeric> accumulate //fill //向容器中填充指定的元素
1 //常用算术生成算法 //#include<numeric> accumulate 2 //fill //向容器中填充指定的元素 3 #include<iostream> ...