更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群

Doris简介

Doris是一种MPP架构的分析型数据库,主要面向多维分析,数据报表,用户画像分析等场景。自带分析引擎和存储引擎,支持向量化执行引擎,不依赖其他组件,兼容MySQL协议。

Apache Doris具备以下几个特点:

  • 良好的架构设计,支持高并发低延时的查询服务,支持高吞吐量的交互式分析。多FE均可对外提供服务,并发增加时,线性扩充FE和BE即可支持高并发的查询请求。

  • 支持批量数据load和流式数据load,支持数据更新。支持Update/Delete语法,unique/aggregate数据模型,支持动态更新数据,实时更新聚合指标。

  • 提供了高可用,容错处理,高扩展的企业级特性。FE Leader错误异常,FE Follower秒级切换为新Leader继续对外提供服务。

  • 支持聚合表和物化视图。多种数据模型,支持aggregate,replace等多种数据模型,支持创建rollup表,支持创建物化视图。rollup表和物化视图支持动态更新,无需用户手动处理。

  • MySQL协议兼容,支持直接使用MySQL客户端连接,非常易用的数据应用对接。

Doris由Frontend(以下简称FE)和Backend(以下简称BE)组成,其中FE负责接受用户请求,编译,优化,分发执行计划,元数据管理,BE节点的管理等功能,BE负责执行由FE下发的执行计划,存储和管理用户数据。

数据湖格式Hudi简介

Hudi是下一代流式数据湖平台,为数据湖提供了表格式管理的能力,提供事务,ACID,MVCC,数据更新删除,增量数据读取等功能。支持Spark,Flink,Presto,Trino等多种计算引擎。

Hudi根据数据更新时行为不同分为两种表类型:

针对Hudi的两种表格式,存在3种不同的查询类型:

Doris分析Hudi数据的技术背景

在数仓业务中,随着业务对数据实时性的要求越来越高,T+1数仓业务逐渐往小时级,分钟级,甚至秒级演进。实时数仓的应用也越来越广,也经历了多个发展阶段。目前存在着多种解决方案。

Lambda架构

Lambda将数据处理流分为在线分析和离线分析分为两条不同的处理路径,两条路径互相独立,互不影响。

离线分析处理T+1数据,使用Hive/Spark处理大数据量,不可变数据,数据一般存储在HDFS等系统上。如果遇到数据更新,需要overwrite整张表或整个分区,成本比较高。

在线分析处理实时数据,使用Flink/Spark Streaming处理流式数据,分析处理秒级或分钟级流式数据,数据保存在Kafka或定期(分钟级)保存到HDFS中。

该套方案存在以下缺点:

  • 同一套指标可能需要开发两份代码来进行在线分析和离线分析,维护复杂

  • 数据应用查询指标时可能需要同时查询离线数据和在线数据,开发复杂

  • 同时部署批处理和流式计算两套引擎,运维复杂

  • 数据更新需要overwrite整张表或分区,成本高

Kappa架构

随着在线分析业务越来越多,Lambda架构的弊端就越来越明显,增加一个指标需要在线离线分别开发,维护困难,离线指标可能和在线指标对不齐,部署复杂,组件繁多。于是Kappa架构应运而生。

Kappa架构使用一套架构处理在线数据和离线数据,使用同一套引擎同时处理在线和离线数据,数据存储在消息队列上。

Kappa架构也有一定的局限:

  • 流式计算引擎批处理能力较弱,处理大数据量性能较弱

  • 数据存储使用消息队列,消息队列对数据存储有有效性限制,历史数据无法回溯

  • 数据时序可能乱序,可能对部分对时序要求比较严格的应用造成数据错误

  • 数据应用需要从消息队列中取数,需要开发适配接口,开发复杂

基于数据湖的实时数仓

针对Lambda架构和Kappa架构的缺陷,业界基于数据湖开发了Iceberg, Hudi, DeltaLake这些数据湖技术,使得数仓支持ACID, Update/Delete, 数据Time Travel, Schema Evolution等特性,使得数仓的时效性从小时级提升到分钟级,数据更新也支持部分更新,大大提高了数据更新的性能。兼具流式计算的实时性和批计算的吞吐量,支持的是近实时的场景。

以上方案中其中基于数据湖的应用最广,但数据湖模式无法支撑更高的秒级实时性,也无法直接对外提供数据服务,需要搭建其他的数据服务组件,系统较为复杂。基于此背景下,部分业务开始使用Doris来承接,业务数据分析师需要对Doris与Hudi中的数据进行联邦分析,此外在Doris对外提供数据服务时既要能查询Doris中数据,也要能加速查询离线业务中的数据湖数据,因此我们开发了Doris访问数据湖Hudi中数据的特性。

Doris分析Hudi数据的设计原理

基于以上背景,我们设计了Apache Doris中查询数据湖格式Hudi数据,因Hudi生态为java语言,而Apache Doris的执行节点BE为C++环境,而C++ 无法直接调用Hudi java SDK,针对这一点,我们有四种解决方案:

  1. 实现Hudi C++ client,在BE中直接调用Hudi C++ client去读写Hudi表。

该方案需要完整实现一套Hudi C++ client,开发周期较长,后期Hudi行为变更需要同步修改Hudi C++ client,维护较为困难。

  1. BE通过thrift协议发送读写请求至Broker,由Broker调用Hudi java client读取Hudi表。

该方案需要在Broker中增加读写Hudi数据的功能,目前Broker定位仅为fs的操作接口,引入Hudi打破了Broker的定位。第二,数据需要在BE和Broker之间传输,性能较低。

  1. 在BE中使用JNI创建JVM,加载Hudi java client去读写Hudi表。

该方案需要在BE进程中维护JVM,有JVM调用Hudi java client对Hudi进行读写。读写逻辑使用Hudi社区java实现,可以维护与社区同步;同时数据在同一个进程中进行处理,性能较高。但需要在BE维护一个JVM,管理较为复杂。

  1. 使用BE arrow parquet c++ api读取hudi parquet base file,hudi表中的delta file暂不处理。

该方案可以由BE直接读取hudi表的parquet文件,性能最高。但当前不支持base file和delta file的合并读取,因此仅支持COW表Snapshot Queries和MOR表的Read Optimized Queries,不支持Incremental Queries。

综上,我们选择方案四,第一期实现了COW表Snapshot Queries和MOR表的Read Optimized Queries,后面联合Hudi社区开发base file和delta file合并读取的C++接口。

Doris分析Hudi数据的技术实现

Doris中查询分析Hudi外表使用步骤非常简单。

创建Hudi外表

建表时指定engine为Hudi,同时指定Hudi外表的相关信息,如hive metastore uri,在hive metastore中的database和table名字等。

建表仅仅在Doris的元数据中增加一张表,无任何数据移动。

建表时支持指定全部或部分hudi schema,也支持不指定schema创建hudi外表。指定schema时必须与hiveMetaStore中hudi表的列名,类型一致。

Example:

   CREATE TABLE example_db.t_hudi
ENGINE=HUDI
PROPERTIES (
"hudi.database" = "hudi_db",
"hudi.table" = "hudi_table",
"hudi.hive.metastore.uris" = "thrift://127.0.0.1:9083"
); CREATE TABLE example_db.t_hudi (
column1 int,
column2 string)
ENGINE=HUDI
PROPERTIES (
"hudi.database" = "hudi_db",
"hudi.table" = "hudi_table",
"hudi.hive.metastore.uris" = "thrift://127.0.0.1:9083"
);

查询Hudi外表

  • 查询Hudi数据表时,FE在analazy阶段会查询元数据获取到Hudi外表的的hive metastore地址,从Hive metastore中获取hudi表的schema信息与文件路径。

  • 获取hudi表的数据地址

  • FE规划fragment增加HudiScanNode。HudiScanNode中获取Hudi table对应的data file文件列表。

  • 根据Hudi table获取的data file列表生成scanRange

  • 下发HudiScan 任务至BE节点

  • BE节点根据HudiScanNode指定的Hudi外表文件路径调用native parquet reader进行数据读取。

后期规划

目前Apche Doris查询Hudi表已合入社区,当前已支持COW表的Snapshot Query,支持MOR表的Read Optimized Query。对MOR表的Snapshot Query暂时还未支持,流式场景中的Incremental Query也没有支持。

后续还有几项工作需要处理,我们和社区也在积极合作进行中:

  1. MOR表的Snapshot Query。MOR表实时读需要合并读取Data file与对应的Delta file,BE需要支持Delta file AVRO格式的读取,需要增加avro的native读取方式。

  2. COW/MOR表的Incremental Query。支持实时业务中的增量读取。

  3. BE读取Hudi base file和delta file的native接口。目前BE读取Hudi数据时,仅能读取data file,使用的是parquet的C++ SDK。后期我们和联合Hudi社区提供Huid base file和delta file的C++/Rust等语言的读取接口,在Doris BE中直接使用native接口来查询Hudi数据。

本文为字节跳动数据平台研发工程师在DataFunSummit大会演讲实录,关注字节跳动数据平台微信公众号,回复【0929】,领取本次分享PPT。

立即跳转火山引擎E-MapReduce官网了解更多信息

字节跳动基于Doris的湖仓分析探索实践的更多相关文章

  1. 基于 Apache Hudi 极致查询优化的探索实践

    摘要:本文主要介绍 Presto 如何更好的利用 Hudi 的数据布局.索引信息来加速点查性能. 本文分享自华为云社区<华为云基于 Apache Hudi 极致查询优化的探索实践!>,作者 ...

  2. 字节跳动基于Apache Hudi构建EB级数据湖实践

    来自字节跳动的管梓越同学一篇关于Apache Hudi在字节跳动推荐系统中EB级数据量实践的分享. 接下来将分为场景需求.设计选型.功能支持.性能调优.未来展望五部分介绍Hudi在字节跳动推荐系统中的 ...

  3. 字节跳动基于ClickHouse优化实践之“多表关联查询”

    更多技术交流.求职机会.试用福利,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 相信大家都对大名鼎鼎的ClickHouse有一定的了解了,它强大的数据分析性能让人印象深刻.但在字节大量 ...

  4. 华为云 MRS 基于 Apache Hudi 极致查询优化的探索实践

    背景 湖仓一体(LakeHouse)是一种新的开放式架构,它结合了数据湖和数据仓库的最佳元素,是当下大数据领域的重要发展方向. 华为云早在2020年就开始着手相关技术的预研,并落地在华为云 Fusio ...

  5. 字节跳动流式数据集成基于Flink Checkpoint两阶段提交的实践和优化

    背景 字节跳动开发套件数据集成团队(DTS ,Data Transmission Service)在字节跳动内基于 Flink 实现了流批一体的数据集成服务.其中一个典型场景是 Kafka/ByteM ...

  6. 刷到血赚!字节跳动内部出品:722页Android开发《360°全方面性能调优》学习手册首次外放,附项目实战!

    前言 我们平时在使用软件的过程中是不是遇到过这样的情况:"这个 app 怎么还没下载完!"."太卡了吧!"."图片怎么还没加载出来!".&q ...

  7. 字节跳动数据平台技术揭秘:基于 ClickHouse 的复杂查询实现与优化

    更多技术交流.求职机会.试用福利,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 ClickHouse 作为目前业内主流的列式存储数据库(DBMS)之一,拥有着同类型 DBMS 难以企及 ...

  8. Presto 在字节跳动的内部实践与优化

    在字节跳动内部,Presto 主要支撑了 Ad-hoc 查询.BI 可视化分析.近实时查询分析等场景,日查询量接近 100 万条.本文是字节跳动数据平台 Presto 团队-软件工程师常鹏飞在 Pre ...

  9. 深度介绍Flink在字节跳动数据流的实践

    本文是字节跳动数据平台开发套件团队在1月9日Flink Forward Asia 2021: Flink Forward 峰会上的演讲分享,将着重分享Flink在字节跳动数据流的实践. 字节跳动数据流 ...

  10. 在字节跳动,一个更好的企业级SparkSQL Server这么做

    SparkSQL是Spark生态系统中非常重要的组件.面向企业级服务时,SparkSQL存在易用性较差的问题,导致难满足日常的业务开发需求.本文将详细解读,如何通过构建SparkSQL服务器实现使用效 ...

随机推荐

  1. openwrt ping: sendto: Network unreachable解决办法

    root@OpenWrt:/# ping zhihu.com PING zhihu.com (103.41.167.234): 56 data bytes ping: sendto: Network ...

  2. HTML5学习内容-3

    (一)行高 line-height,一行文字的高度 例子 <!DOCTYPE html> <html lang="en"> <head> < ...

  3. 监控报警体系:Prometheus和Grafana

    总体 prometheus全链路监控报警,在当今云原生时代可观测领域,Prometheus + Grafana 成为可观测性事实标准. 采集数据:运维团队可以使用 Prometheus 监控云原生 K ...

  4. 简单理解cookie/session机制(转)

    http://www.woshipm.com/pd/864133.html cookie与session应用于互联网中的一项基本技术--会话(用户与客户端的交互)跟踪技术,用来跟踪用户的整个会话.简单 ...

  5. 【pwn】[SWPUCTF 2021 新生赛]nc签到 --shell过滤字符

    附件下载打开: import os art = '''    ((  "####@@!!$$    ))       `#####@@!$$`  ))    ((  '####@!!$:  ...

  6. Linux下redis的安装下载以及连接RESP

    一.环境 Centos7.redis-6.2.6.gcc依赖.管理员权限 将防火墙放通6379/tcp端口或直接关闭防火墙 二.安装具体步骤 1. 安装依赖 redis是由C语言开发,因此安装之前必须 ...

  7. C语言输入一行字符,分别统计出其中英文字母、空格、数字与其它字符得个数。

    #include<stdio.h> void main() { char c; int letter = 0, space = 0, digit = 0, other = 0; print ...

  8. HarmonyOS 开发入门(二)

    HarmonyOS 开发入门(二) 日常逼逼叨 在HarmonyOS 开发入门(一)中我们描述了 HarmonyOS 开发的语言ArKTs以及Ts简单的入门级语法操作,接下来我们进入第二部分Harmo ...

  9. 【译】使用 GitHub Copilot 编写 Git 提交

    在花费数小时修复 bug 或更新特性之后,我们开发人员最不愿意做的事情往往是仔细说明 Git 提交的内容.最新的 Visual Studio 预览版可以帮到您.使用新的生成 Git 提交消息特性来帮助 ...

  10. springboot整合kafka,收不到消息,日志输出dead for group解决方法

    项目启动以后收不到Kafka发出的消息,日志输出类似: INFO [org.springframework.kafka.KafkaListenerEndpointContainer#1-7-C-1] ...