MMDeploy部署实战系列【第三章】:MMdeploy pytorch模型转换onnx,tensorrt
MMDeploy部署实战系列【第三章】:MMdeploy pytorch模型转换onnx,tensorrt
这个系列是一个随笔,是我走过的一些路,有些地方可能不太完善。如果有那个地方没看懂,评论区问就可以,我给补充。
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。
目录:
0️⃣ mmdeploy源码安装 (转换faster rcnn r50/yolox为tensorrt,并进行推理)_gy77
内容:一文包含了在Linux系统下安装mmdeploy模型转换环境,模型转换为TensorRT,在Linux,Windows下模型推理,推理结果展示。
1️⃣ MMDeploy部署实战系列【第一章】:Docker,Nvidia-docker安装_gy77
内容:docker/nvidia-docker安装,docker/nvidia-docker国内源,docker/nvidia-docker常用命令。
2️⃣ MMDeploy部署实战系列【第二章】:mmdeploy安装及环境搭建_gy77
内容:mmdeploy环境安装三种方法:源码安装,官方docker安装,自定义Dockerfile安装。
3️⃣ MMDeploy部署实战系列【第三章】:MMdeploy pytorch模型转换onnx,tensorrt_gy77
内容:如何查找pytorch模型对应的部署配置文件,模型转换示例:mmcls:resnext50,mmdet:yolox-s,faster rcnn50。
4️⃣ MMDeploy部署实战系列【第四章】:onnx,tensorrt模型推理_gy77
内容:在linux,windows环境下推理,Windows下推理环境安装,推理速度对比,显存对比,可视化展示。
5️⃣ MMDeploy部署实战系列【第五章】:Windows下Release x64编译mmdeploy(C++),对TensorRT模型进行推理_gy77
内容:Windows下环境安装编译环境,编译c++ mmdeploy,编译c++ mmdeploy demo,运行实例。
6️⃣ MMDeploy部署实战系列【第六章】:将编译好的MMdeploy导入到自己的项目中 (C++)_gy77
内容:Windows下环境导入我们编译好的mmdeploy 静态/动态库。
下面是正文:
MMdeploy官方教程:如何转换模型 — mmdeploy 0.5.0 文档
我要用到的是mmclassification转换到tensorrt。
python ./tools/deploy.py \
${DEPLOY_CFG_PATH} \
${MODEL_CFG_PATH} \
${MODEL_CHECKPOINT_PATH} \
${INPUT_IMG} \
--test-img ${TEST_IMG} \
--work-dir ${WORK_DIR} \
--calib-dataset-cfg ${CALIB_DATA_CFG} \
--device ${DEVICE} \
--log-level INFO \
--show \
--dump-info
参数描述:
- deploy_cfg : MMDeploy 中用于部署的配置文件路径。
- model_cfg : OpenMMLab 系列代码库中使用的模型配置文件路径。
- checkpoint : OpenMMLab 系列代码库的模型文件路径。
- img : 用于模型转换时使用的图像文件路径。
- --test-img : 用于测试模型的图像文件路径。默认设置成None。
- --work-dir : 工作目录,用来保存日志和模型文件。
- --calib-dataset-cfg : 此参数只有int8模式下生效,用于校准数据集配置文件。若在int8模式下未传入参数,则会自动使用模型配置文件中的’val’数据集进行校准。
- --device : 用于模型转换的设备。 默认是cpu。
- --log-level : 设置日记的等级,选项包括'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'。 默认是INFO。
- --show : 是否显示检测的结果。
- --dump-info : 是否输出 SDK 信息。
如何查找pytorch模型对应的部署配置文件
- 在 configs/ 文件夹中找到模型对应的代码库文件夹。 例如,转换一个yolov3模型您可以查找到 configs/mmdet 文件夹。
- 根据模型的任务类型在 configs/codebase_folder/ 下查找对应的文件夹。 例如yolov3模型,您可以查找到 configs/mmdet/detection 文件夹。
- 在 configs/codebase_folder/task_folder/ 下找到模型的部署配置文件。 例如部署yolov3您可以使用 configs/mmdet/detection/detection_onnxruntime_dynamic.py。
模型转换示例
0️⃣ 转换命令
python ./tools/deploy.py \
configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
$PATH_TO_MMDET/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py \
$PATH_TO_MMDET/checkpoints/yolo/yolov3_d53_mstrain-608_273e_coco.pth \
$PATH_TO_MMDET/demo/demo.jpg \
--work-dir work_dir \
--show \
--device cuda:0
1️⃣ 分类resnext50 tensorrt转换脚本
进入mmdeploy docker容器
docker run --gpus all -it -p 8080:8080 -v /home/xbsj/gaoying/mmdeploy_out/:/root/workspace/mmdeploy_out mmdeploy:2104
脚本:转换为onnx文件和tensorrt文件
git clone https://gitee.com/monkeycc/mmclassification.git
cd mmclassification
pip install -e .
mkdir checkpoints
cd checkpoints
wget https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.pth -O resnext50_32x4d_b32x8_imagenet.pth
cd ../../mmdeploy
python tools/deploy.py configs/mmcls/classification_tensorrt_dynamic-224x224-224x224.py ../mmclassification/configs/resnext/resnext50_32x4d_b32x8_imagenet.py ../mmclassification/checkpoints/resnext50_32x4d_b32x8_imagenet.pth ../mmclassification/demo/demo.JPEG --work-dir ../mmdeploy_out/mmcls/resnext50_trt --device cuda:0 --dump-info
2️⃣ 检测yolox-s tensorrt转换脚本(失败)
进入mmdeploy docker容器
docker run --gpus all -it -p 8080:8080 -v /home/xbsj/gaoying/mmdeploy_out/:/root/workspace/mmdeploy_out mmdeploy:2104
脚本:转换为onnx文件和tensorrt文件
cd mmdetection/checkpoints
wget https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth -O yolox_s_8x8_300e_coco.pth
cd ../../mmdeploy
python tools/deploy.py configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py ../mmdetection/configs/yolox/yolox_s_8x8_300e_coco.py ../mmdetection/checkpoints/yolox_s_8x8_300e_coco.pth ../mmdetection/demo/demo.jpg --work-dir ../mmdeploy_out/mmdet/yolox_l_tensorrt/ --device cuda:0 --dump-info
3️⃣ 检测faster rcnn r50 tensorrt转换脚本
进入mmdeploy docker容器
docker run --gpus all -it -p 8080:8080 -v /home/xbsj/gaoying/mmdeploy_out/:/root/workspace/mmdeploy_out mmdeploy:2104
脚本:转换为onnx文件和tensorrt文件
git clone https://gitee.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -e .
mkdir checkpoints
cd checkpoints
wget https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
mv faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth faster_rcnn_r50_fpn_1x_coco.pth
cd ../../mmdeploy
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pycuda
python tools/deploy.py configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py ../mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py ../mmdetection/checkpoints/faster_rcnn_r50_fpn_1x_coco.pth ../mmdetection/demo/demo.jpg --work-dir ../mmdeploy_out/mmdet/faster_rcnn_r50_trt/ --device cuda:0 --dump-info
MMDeploy部署实战系列【第三章】:MMdeploy pytorch模型转换onnx,tensorrt的更多相关文章
- AspNetCore-MVC实战系列(三)之个人中心
AspNetCore - MVC实战系列目录 . 爱留图网站诞生 . git源码:https://github.com/shenniubuxing3/LovePicture.Web . AspNetC ...
- Ionic 入门与实战之第三章:Ionic 项目结构以及路由配置
原文发表于我的技术博客 本文是「Ionic 入门与实战」系列连载的第三章,主要对 Ionic 的项目结构作了介绍,并讲解了Ionic 中的路由概念以及相关配置. 原文发表于我的技术博客 1. Ioni ...
- 基于 abp vNext 和 .NET Core 开发博客项目 - Blazor 实战系列(三)
系列文章 基于 abp vNext 和 .NET Core 开发博客项目 - 使用 abp cli 搭建项目 基于 abp vNext 和 .NET Core 开发博客项目 - 给项目瘦身,让它跑起来 ...
- 《精通Spring4.x企业应用开发实战》第三章
这一章节主要介绍SpringBoot的使用,也是学习的重点内容,之后就打算用SpringBoot来写后台,所以提前看一下还是很有必要的. 3.SpringBoot概况 3.1.1SpringBoot发 ...
- jQuery系列 第三章 jQuery框架操作CSS
第三章 jQuery框架操作CSS 3.1 jQuery框架的CSS方法 jQuery框架提供了css方法,我们通过调用该方法传递对应的参数,可以方便的来批量设置标签的CSS样式. 使用JavaScr ...
- SpringBoot基础实战系列(三)springboot单文件与多文件上传
springboot单文件上传 对于springboot文件上传需要了解一个类MultipartFile ,该类用于文件上传.我此次使用thymeleaf模板引擎,该模板引擎文件后缀 .html. 1 ...
- 《Java并发编程实战》第三章 对象的共享 读书笔记
一.可见性 什么是可见性? Java线程安全须要防止某个线程正在使用对象状态而还有一个线程在同一时候改动该状态,并且须要确保当一个线程改动了对象的状态后,其它线程能够看到发生的状态变化. 后者就是可见 ...
- (第三章)Java内存模型(下)
一.happens-before happens-before是JMM最核心的概念.对于Java程序员来说,理解happens-before是理解JMM的关键. 1.1 JMM的设计 从JMM设计者的 ...
- 第三章 TCP/IP 模型
一.产生背景 1.伴随着计算机网络的飞跃发展,各大厂商根据自己的协议生产出了不同的硬件和软件 2.为了实现网络设备间的互相通讯,ISO和IEEE相继提出了OSI参考模型及其TCP/IP模型 二.TCP ...
- 【无私分享:ASP.NET CORE 项目实战(第三章)】EntityFramework下领域驱动设计的应用
目录索引 [无私分享:ASP.NET CORE 项目实战]目录索引 简介 在我们 [无私分享:从入门到精通ASP.NET MVC] 系列中,我们其实也是有DDD思想的,但是没有完全的去实现,因为并不是 ...
随机推荐
- ie7bug,一个块级元素或者一个行内元素里面有个子元素设置向右边浮动,在IE7会出现元素下掉现象!
元素包含结构如下: <h1>testing<span>综合评级:<em></em></span></h1> CSS,如下 h1{ ...
- 泰凌微2.4G无线私有协议芯片开发总结
案例 近些年,团队一直围绕着无线这块来做产品方案.一个无意的举动,接触到了泰凌微的2.4G私有协议芯片,发现这颗芯片在好几个场景中使用非常合适.就把这个芯片推荐给了客户,经过几个案子的历练.积 ...
- 修改阿里云DNS 解决蓝奏云无法访问问题
某些地区的宽带连接不上蓝奏云服务器,需要手动改一下DNS配置,改为阿里云的即可 PS:阿里云DNS服务器地址为223.5.5.5 和 223.6.6.6 下面以win10系统为例,具体步骤如下 1.进 ...
- javascript import maps 特性现已被全部主流浏览器支持
值得庆祝 Import maps 特性现在可以在全部三个主要浏览器内使用 现在主流现代web 应用 引入和利用javascript 是通过 Es module 模块实现. 在开发javascript上 ...
- C程序问题归纳(static,auto,register,extern,程序内存分布图,linux下程序的执行过程......)(二)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- HttpClient 详解
作者:小白豆豆5链接:https://www.jianshu.com/p/14c005e9287c来源:简书著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 1.HTTP 请求创建 ...
- CYQ.Data 操作 Json 性能测试:对比 Newtonsoft.Json
前言: 在 CYQ.Data 版本更新的这么多年,中间过程的版本都在完善各种功能. 基于需要支持或兼容的代码越多,很多时候,常规思维,都把相关功能完成,就结束了. 实现过程中,无法避免的会用到大量的反 ...
- uni之this作用域
目录介绍 01.先看一个案例 02.看一下解决方案 01.先看一个案例 代码如下所示 发现了点击按钮1可以更新title内容,但是点击按钮2却无法更新title内容.这个究竟是为什么呢? <te ...
- [Java]细节与使用经验
[版权声明]未经博主同意,谢绝转载!(请尊重原创,博主保留追究权) https://www.cnblogs.com/cnb-yuchen/p/18032072 出自[进步*于辰的博客] 纯文字阐述,内 ...
- 在 .NET 中使用 OPC UA 协议
目录 什么是 OPC UA UaExpert 的使用 下载 UaExpert 首次启动 添加 OPC UA 服务器 连接 OPC UA 服务器 查看 PLC 数据 使用 C# 读写 OPC UA 数据 ...