线性dp:编辑距离
编辑距离
- 本题与力扣72.编辑距离题意一样,阅读完本文可以尝试leetcode72.
力扣题目链接
题目叙述
输入两个字符串a,b。输出从字符串a修改到字符串b时的编辑距离
输入
NOTV
LOVER
输出
4
题目解释:
动态规划思路
- 这个问题显然是一个最优解问题,我们可以考虑动态规划的思路,那么我们使用动态规划的思路,要想得到最优解问题,那么我们必须要先考虑子问题。
- 子问题:我们先考虑
a[1,2...i]
到b[1,2....j]
的编辑距离
状态变量的含义
- 设立一个
dp数组
,作为我们的状态变量dp[i][j]
表示以从a[1...i]
到b[1....j]
的编辑距离
递推公式
- 设立完状态变量,那么我们就进入了递推公式的推导
- 1.若
a[i]
=b[j]
,那么dp[i][j]==dp[i-1][j-1]
- 2.
a[i]!=b[j]
- 1.若
- 那么我们就很容易的推出我们的递推公式:
dp[i][j]
=dp[i-1][j-1]
(a[i]==b[j]
)dp[i][j]=min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j])+1
)(a[i]!=b[j]
)
遍历顺序
- 显然是从上到下,从左到右。
初始化dp数组
边界条件:
f[i][0]=i
f[0][j]=j
对应的初始化代码如下:
m=strlen(a);
n=strlen(b);
for(int i=1;i<=m;j++) dp[i][0]=i;
for(int j=1;j<=n;j++) dp[0][j]=j;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1];
else dp[i][j]=min(dp[i-1][j-1],min(dp[i][j-1],dp[i-1][j])+1;
}
}
cout<<f[m][n];
举例打印dp数组
- 举例如下:
代码
- 最终实现代码如下:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
char a[2005],b[2005];
int f[2005][2005];
int main(){
scanf("%s %s",a,b);
int la=strlen(a), lb=strlen(b);
for(int i=1;i<=la;i++) f[i][0]=i;
for(int i=1;i<=lb;i++) f[0][i]=i
for(int i=1;i<=la;i++)
for(int j=1;j<=lb;j++)
if(a[i-1]==b[j-1])f[i][j]=f[i-1][j-1];
else f[i][j]=min(min(f[i-1][j],f[i][j-1]),f[i-1][j-1])+1;
printf("%d\n",f[la][lb]);
}
线性dp:编辑距离的更多相关文章
- 洛谷P1140 相似基因(线性DP)
题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了444种核苷酸,简记作A,C,G,TA,C,G,TA,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. 在一个人类 ...
- 动态规划篇——线性DP
动态规划篇--线性DP 本次我们介绍动态规划篇的线性DP,我们会从下面几个角度来介绍: 数字三角形 最长上升子序列I 最长上升子序列II 最长公共子序列 最短编辑距离 数字三角形 我们首先介绍一下题目 ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
- nyoj44 子串和 线性DP
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...
- 『最大M子段和 线性DP』
最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...
随机推荐
- 学习嵌入式为什么要学习uboot
ref:http://www.elecfans.com/d/617674.html 为什么要有BootLoader 背景 很多人学习嵌入式一开始就搞Linux,这样子容易对底层缺少了解. 基础介绍 计 ...
- 『vulnhub系列』Dripping-Blues-1
『vulnhub系列』Dripping-Blues-1 下载地址: https://www.vulnhub.com/entry/dripping-blues-1,744/ 信息搜集: 使用nmap进行 ...
- Linux上快速安装 RabbitMQ
1.默认安装最新版,安装erlang apt-get install erlang 2.安装最新版 rabbitmq sudo apt-get update sudo apt-get install ...
- python跟踪脚本运行过程(类似bash shell -x)
#详细追踪 python -m trace --trace pyscript.py #显示调用了哪些函数 python -m trace --trackcalls pyscript.py
- 将虚拟机跑在ceph之中
目录 openStack对接ceph 1. cinder对接ceph 1.1 ceph创建存储池 1.2 ceph授权 1.3 下发ceph文件 1.4 修改globals文件 1.5 部署cinde ...
- 异构数据源数据同步 → 从源码分析 DataX 敏感信息的加解密
开心一刻 出门扔垃圾,看到一大爷摔地上了 过去问大爷:我账户余额 0.8,能扶你起来不 大爷往旁边挪了挪 跟我说到:孩子,快,你也躺下,这个来钱快! 我没理大爷,径直去扔了垃圾 然后飞速的躺在了大爷旁 ...
- [oeasy]python0132_[趣味拓展]emoji_表情符号_抽象话_由来_流汗黄豆
emoji表情符号 回忆上次内容 上次了解了unicode 和 utf-8 unicode是字符集 utf-8是一种可变长度的编码方式 utf-8是实现unicode的存储和传输的现实的方式 ...
- 如何在 Vue 和 JavaScript 中截取视频任意帧图片
如何在 Vue 和 JavaScript 中截取视频任意帧图片 大家好!今天我们来聊聊如何在 Vue 和 JavaScript 中截取视频的任意一帧图片.这个功能在很多场景下都非常有用,比如视频编辑. ...
- 机器学习:详解迁移学习(Transfer learning)
详解迁移学习 深度学习中,最强大的理念之一就是,有的时候神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中.所以例如,也许已经训练好一个神经网络,能够识别像猫这样的对象,然后使用那 ...
- C# Winform与JS交互
一.C#调用JS函数 1.JS代码 < script language = "javascript" > function Hello(msg) { alert('我是 ...