编辑距离

  • 本题与力扣72.编辑距离题意一样,阅读完本文可以尝试leetcode72.

    力扣题目链接

题目叙述

输入两个字符串a,b。输出从字符串a修改到字符串b时的编辑距离

输入

NOTV
LOVER

输出

4

题目解释:

动态规划思路

  • 这个问题显然是一个最优解问题,我们可以考虑动态规划的思路,那么我们使用动态规划的思路,要想得到最优解问题,那么我们必须要先考虑子问题。
  • 子问题:我们先考虑a[1,2...i]b[1,2....j]的编辑距离

状态变量的含义

  • 设立一个dp数组,作为我们的状态变量

    • dp[i][j]表示以从a[1...i]b[1....j]的编辑距离

递推公式

  • 设立完状态变量,那么我们就进入了递推公式的推导

    • 1.若a[i]=b[j],那么dp[i][j]==dp[i-1][j-1]
    • 2.a[i]!=b[j]

  • 那么我们就很容易的推出我们的递推公式:

    • dp[i][j]=dp[i-1][j-1]a[i]==b[j]
    • dp[i][j]=min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j])+1)(a[i]!=b[j]

遍历顺序

  • 显然是从上到下,从左到右。

初始化dp数组

  • 边界条件:

    • f[i][0]=i
    • f[0][j]=j
  • 对应的初始化代码如下:

m=strlen(a);
n=strlen(b);
for(int i=1;i<=m;j++) dp[i][0]=i;
for(int j=1;j<=n;j++) dp[0][j]=j;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1];
else dp[i][j]=min(dp[i-1][j-1],min(dp[i][j-1],dp[i-1][j])+1;
}
}
cout<<f[m][n];

举例打印dp数组

  • 举例如下:

代码

  • 最终实现代码如下:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std; char a[2005],b[2005];
int f[2005][2005]; int main(){
scanf("%s %s",a,b);
int la=strlen(a), lb=strlen(b);
for(int i=1;i<=la;i++) f[i][0]=i;
for(int i=1;i<=lb;i++) f[0][i]=i for(int i=1;i<=la;i++)
for(int j=1;j<=lb;j++)
if(a[i-1]==b[j-1])f[i][j]=f[i-1][j-1];
else f[i][j]=min(min(f[i-1][j],f[i][j-1]),f[i-1][j-1])+1; printf("%d\n",f[la][lb]);
}

线性dp:编辑距离的更多相关文章

  1. 洛谷P1140 相似基因(线性DP)

    题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了444种核苷酸,简记作A,C,G,TA,C,G,TA,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. 在一个人类 ...

  2. 动态规划篇——线性DP

    动态规划篇--线性DP 本次我们介绍动态规划篇的线性DP,我们会从下面几个角度来介绍: 数字三角形 最长上升子序列I 最长上升子序列II 最长公共子序列 最短编辑距离 数字三角形 我们首先介绍一下题目 ...

  3. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  4. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  5. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  6. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  7. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  8. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  9. nyoj44 子串和 线性DP

    线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...

  10. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

随机推荐

  1. .NET 认识日志系统-2

    .NET 日志系统2 上一篇文章是将日志打印到控制台,这篇文章将日志写入到文本文件中. 文本日志一般按照日期区分 如何避免文本日志把磁盘撑爆? 限制日志总个数或者总大小 如何避免一个日志文件太大? 限 ...

  2. ETL服务器连接GaussDB(DWS)集群客户端配置

    问题描述:给ETL的服务器上安装gsql的工具,用来连接GaussDB(DWS)集群,做数据抽取用 DWS:GaussDB(DWS) 8.2.1-ESL 1.获取软件包 登录FusionInsight ...

  3. linux 清理 pyinstaller 打包程序运行留下的临时文件

    前言 pyinstaller 打包的 python 二进制可执行程序运行的时候,会在 /tmp 目录下生成 _MEI* (*指的是随机数字)文件夹, 如果程序没有正常退出或者终止了,_MEI* 文件夹 ...

  4. 面试官:Java线程可以无限创建吗?

    哈喽,大家好,我是世杰. 本次给大家介绍一下操作系统线程和Java的线程以及二者的关联 1. 面试连环call Java线程可以无限创建吗? Java线程和操作系统线程有什么关联? 操作系统为什么要区 ...

  5. FSCTF 2023(公开赛道)WP

    FSCTF 2023 ID:Mar10 Rank:6 总结:下次看到不正常报错一定重新安装一遍工具~~ web 源码!启动! 就在源码注释里 <!-- 师傅们,欢迎来到CTF的世界~ NSSCT ...

  6. Linux Centos7搭建RabbitMQ

    下载依赖 yum -y install epel-release yum -y update 安装Erlang yum -y install erlang socat 测试安装成功 erl -vers ...

  7. 利用SpringBoot+rabbitmq 实现邮件异步发送,保证100%投递成功

    在之前的文章中,我们详细介绍了 SpringBoot 整合 mail 实现各类邮件的自动推送服务. 但是这类服务通常不稳定,当出现网络异常的时候,会导致邮件推送失败. 本篇文章将介绍另一种高可靠的服务 ...

  8. OnlyOffice 部署与使用

    Onlyoffice为office类文档预览支持服务,该服务需在Linux系统上运行,需要用Docker容器技术. 以下步骤皆在Linux系统中操作. 一.OnlyOffice部署 1.安装Docke ...

  9. oeasy教您玩转vim - 16 跳到某行

    跳到某行 回忆上节课内容 上下行 向 下 是 j 向 上 是 k 上下行首 向 下 到行首非空字符 + 向 上 到行首非空字符 - 这些 motion 都可以加上 [count] 来翻倍 首尾行 首行 ...

  10. Midnight Commander (MC)

    Midnight Commander GNU Midnight Commander 是一个可视化文件管理器,根据 GNU 通用公共许可证获得许可,因此有资格成为自由软件.它是一个功能丰富的全屏文本模式 ...