【动态规划】【二分】【最长上升子序列】HDU 5773 The All-purpose Zero
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5773
题目大意:
T组数据,n个数(n<=100000),求最长上升子序列长度(0可以替代任何自然数)
题目思路:
【动态规划】【二分】【最长上升子序列】
按最长上升子序列做,遇到0的时候更新所有长度的最优解。(这种暴力解法都能过?而且还比标解快?)
//
//by coolxxx
//
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//#include<stdbool.h>
#include<math.h>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define eps (1e-8)
#define J 10000000
#define MAX 0x7f7f7f7f
#define PI 3.1415926535897
#define N 100004
using namespace std;
typedef long long LL;
int cas,cass;
int n,m,lll,ans;
int a[N],q[N];
void work()
{
int i,j,l,r,mid;
lll=;
memset(q,-,sizeof(q));
for(i=;i<=n;i++)
{
if(a[i]==)
{
q[lll+]=q[lll]+;
for(j=lll;j>;j--)q[j]=min(q[j-]+,q[j]);
q[]=;lll++;
continue;
}
l=,r=lll;
while(l<r)
{
mid=(l+r+)>>;
if(a[i]>q[mid])l=mid;
else r=mid-;
}
q[r+]=a[i];
lll=max(lll,r+);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1.txt","r",stdin);
// freopen("2.txt","w",stdout);
#endif
int i,j;
// for(scanf("%d",&cas);cas;cas--)
for(scanf("%d",&cas),cass=;cass<=cas;cass++)
// while(~scanf("%s",s))
// while(~scanf("%d",&n))
{
printf("Case #%d: ",cass);
scanf("%d",&n);
for(i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
work();
printf("%d\n",lll);
}
return ;
}
/*
// //
*/
正解是把0先都拿出来,非0的数都减去它前面0的个数(0可以变成任何自然数),求最长上升子序列,再把0的数加上即为答案。
//
//by coolxxx
////<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//#include<stdbool.h>
#include<math.h>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define mem(a,b) memset(a,b,sizeof(a))
#define eps (1e-8)
#define J 10000000
#define MAX 0x7f7f7f7f
#define PI 3.14159265358979323
#define N 100004
using namespace std;
typedef long long LL;
int cas,cass;
int n,m,lll,ans;
int a[N],q[N];
void work()
{
int i,j,l,r,mid;
lll=;
memset(q,-,sizeof(q));
for(i=;i<=n;i++)
{
l=,r=lll;
while(l<r)
{
mid=(l+r+)>>;
if(a[i]>q[mid])l=mid;
else r=mid-;
}
q[r+]=a[i];
lll=max(lll,r+);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1.txt","r",stdin);
// freopen("2.txt","w",stdout);
#endif
int i,j;
// for(scanf("%d",&cas);cas;cas--)
for(scanf("%d",&cas),cass=;cass<=cas;cass++)
// while(~scanf("%s",s))
// while(~scanf("%d",&n))
{
printf("Case #%d: ",cass);
scanf("%d",&n);
m=;
for(i=;i<=n;i++)
{
scanf("%d",&a[i]);
if(a[i]==)n--,i--,m++;
else a[i]-=m;
}
work();
printf("%d\n",lll+m);
}
return ;
}
/*
// //
*/
【动态规划】【二分】【最长上升子序列】HDU 5773 The All-purpose Zero的更多相关文章
- HDU 4604 Deque 二分最长上升子序列
题目大意就是给一个deque 然后有n个数,依次进行操作,每种操作,你可以把这个数放在deque首部,也可以放在尾部,也可以扔掉不管,但是要保证deque中的数是非递减的.最要求deque中最长能是多 ...
- 动态规划:最长上升子序列(二分算法 nlogn)
解题心得: 1.在数据量比较大的时候n^2会明显超时,所以可以使用nlogn 的算法,此算法少了双重循环,用的lower_bound(二分法). 2.lis中的数字并没有意义,仅仅是找到最小点lis[ ...
- HDU 1159 Common Subsequence (动态规划、最长公共子序列)
Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 1243 反恐训练营 (动态规划求最长公共子序列)
反恐训练营 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- 动态规划:最长上升子序列(LIS)
转载请注明原文地址:http://www.cnblogs.com/GodA/p/5180560.html 学习动态规划问题(DP问题)中,其中有一个知识点叫最长上升子序列(longest incre ...
- 动态规划初步--最长上升子序列(LIS)
一.问题 有一个长为n的数列 a0,a1,a2...,an-1a.请求出这个序列中最长的上升子序列的长度和对应的子序列.上升子序列指的是对任意的i < j都满足ai < aj的子序列. 二 ...
- 【动态规划】最长上升子序列(LIS)
今天看了<挑战程序设计竞赛>的动态规划部分,感觉对以前一些知其然却不知其所以然的问题有了更好的理解,先整理一部分. 题意: 有一个长为n的数列a0,a1,a2,...,an .请求出这个序 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
随机推荐
- Java 原始数据类型转换
在开发中经常遇到数据类型转换的问题,大多数都是拿来强制转换,强制转换可能会出现你意想不到的问题: int a = -1; 我们经过多重转换之后:int b = (int)(char)(byte) a ...
- 安装zookeeper时候,可以查看进程启动,但是状态显示报错:Error contacting service. It is probably not running
安装zookeeper-3.3.2的时候,启动正常没报错,但zkServer.sh status查看状态的时候却出现错误,如下: JMX enabled by defaultUsing config: ...
- NSDate,NSCalendar,NSTimer,NSTimeZone
NSDate存储的是世界标准时(UTC),输出时需要根据时区转换为本地时间 Dates NSDate类提供了创建date,比较date以及计算两个date之间间隔的功能.Date对象是不可改变的. ...
- ZOJ 刷题记录 (。・ω・)ノ゙(Progress:31/50)
[热烈庆祝ZOJ回归] P1002:简单的DFS #include <cstdio> #include <cstring> #include <algorithm> ...
- 【POJ1151】【扫描线+线段树】Atlantis
Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...
- 【POJ1733】【带标记并查集】Parity game
Description Now and then you play the following game with your friend. Your friend writes down a seq ...
- php文件加锁 lock_sh ,lock_ex
文件锁有两种:共享锁和排他锁,也就是读锁(LOCK_SH)和写锁(LOCK_EX) 文件的锁一般这么使用: $fp = fopen("filename", "a" ...
- alsa utils工具使用
1.amixer用于控制设置 amixer [-c card] [cmd] ./amixer contents ./amixer cset ./amixer cget 2. aplay ./aplay ...
- java.lang.String类compareTo()返回值解析
一.compareTo()的返回值是int,它是先比较对应字符的大小(ASCII码顺序)1.如果字符串相等返回值02.如果第一个字符和参数的第一个字符不等,结束比较,返回他们之间的差值(ascii码值 ...
- sass编译css(转自阮一峰)
一.什么是SASS SASS是一种CSS的开发工具,提供了许多便利的写法,大大节省了设计者的时间,使得CSS的开发,变得简单和可维护. 本文总结了SASS的主要用法.我的目标是,有了这篇文章,日常的一 ...