Print Article

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 4810    Accepted Submission(s): 1451

Problem Description
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
 
Input
There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
 
Output
A single number, meaning the mininum cost to print the article.
 
Sample Input
5 5 5 9 5 7 5
 
Sample Output
230
 
 
第一次写斜率优化,代码很丑。
斜率优化模式为dp[i]=min(a[j]*b[i]+c[j])+d[i]
则 dp[i]=a[j]*b[i]+c[j]+d[i]
  b[i]*a[j]+d[i]-dp[i]=c[j]
等价于 a*x  +    b       =y
而(x,y)已处理,可用log(n) 求出b的最值
与模板是式子本题f[i]=min(f[j]-2*sum[j]*sum[i]+sum[j]^2)+sum[i]^2+m相符。
另外,表示凸包写的还是很不熟练。
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define MAXN 510000
#define INF 0x3f3f3f3f
//AC
int n,m;
int num[MAXN];
typedef long long qword;
qword f[MAXN];
qword sum[MAXN];
inline qword sqr(int x)
{
return x*x;
}
//f[i]=min(f[j]-2*sum[j]*sum[i]+sum[j]^2)+sum[i]^2+m
//f[i]=-2*sum[j]*sum[i] + f[j]+sum[j]^2 +sum[i]^2 + m
// -2*sum[i]*sum[j] + sum[i]^2-f[i]+m == -f[j]-sum[j]^2
struct Point
{
qword x,y;
void init(qword xx,qword yy)
{
x=xx;y=yy;
}
};
Point make_point (qword x,qword y)
{
Point ret;
ret.init(x,y);
return ret;
}
qword xmul(Point p1,Point p2,Point p3)
{
return (p2.x-p1.x)*(p3.y-p1.y)-(p2.y-p1.y)*(p3.x-p1.x);
}
double get_k(Point p1,Point p2)
{
if (p1.x==p2.x)throw "error";
return (double)(p2.y-p1.y)/(p2.x-p1.x);
}
struct Convex_Hall
{
Point pl[MAXN];
double kk[MAXN];
int topl;
void clear()
{
topl=-;
} Convex_Hall()
{
topl=-;
}
void add_point(Point pp)
{
if (topl<)
{
pl[++topl]=pp;
if (topl==&&pl[topl].x==pl[topl-].x)
{
if (pl[topl].y<pl[topl-].y)
{
topl--;
return ;
}else
{
pl[topl--]=pp;
return ;
} }
if (topl==)
{
kk[topl-]=get_k(pl[topl-],pl[topl]);
}
return ;
}
while (topl>=&&xmul(pl[topl-],pl[topl],pp)>=)
{
topl--;
}
pl[++topl]=pp;
kk[topl-]=get_k(pl[topl-],pp);
}
void pm()
{
int i;
for(i=;i<=topl;i++)
{
printf("(%d,%d) ",pl[i].x,pl[i].y);
}
printf("\n");
}
double get_maxb(double k)
{
int l,r,mid;
if (topl==-)throw "Error";
if (topl==)return pl[].y-pl[].x*k;
if (k>kk[])return pl[].y-pl[].x*k;
if (k<kk[topl-])return pl[topl].y-pl[topl].x*k;
l=,r=topl;
while (l<r)
{
mid=(l+r)>>;
if (kk[mid-]>=k&&kk[mid]<=k)
{
return pl[mid].y-pl[mid].x*k;
}
if (kk[mid-]<k)
{
r=mid;
}else
{
l=mid;
}
}
}
}H; int main()
{
//freopen("input.txt","r",stdin);
int i;
while (~scanf("%d%d",&n,&m))
{
H.clear();
for (i=;i<=n;i++)
{
scanf("%d",&num[i]);
sum[i]=sum[i-]+num[i];
}
memset(f,INF,sizeof(f));
/* f[0]=0;
for (i=1;i<=n;i++)
{
for (j=0;j<i;j++)
{
if (f[j]>=INF)continue;
f[i]=min(f[i],f[j]+sqr(sum[i]-sum[j])+m);
}
}
for (i=1;i<=n;i++)cout<<f[i]<<" ";cout<<endl;
*/ f[]=;
H.add_point(make_point(sum[],-sum[]*sum[]-f[]));
double k,b;
for (i=;i<=n;i++)
{
k=-*sum[i];
b=H.get_maxb(k);
f[i]=sum[i]*sum[i]+m-ceil(b);
H.add_point(make_point(sum[i],-sum[i]*sum[i]-f[i]));
// cout<<f[i]<<" ";
}
cout<<f[n]<<endl;;
}
return ;
}

HDU 3507 Print Article 斜率优化的更多相关文章

  1. hdu 3507 Print Article(斜率优化DP)

    题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...

  2. hdu 3507 Print Article —— 斜率优化DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3507 设 f[i],则 f[i] = f[j] + (s[i]-s[j])*(s[i]-s[j]) + m ...

  3. HDU 3507 - Print Article - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507 Zero has an old printer that doesn't work well s ...

  4. HDU 3507 单调队列 斜率优化

    斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...

  5. ●HDU 3507 Print Article

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=3507 题解: 斜率优化DP 一个入门题,就不给题解了,网上的好讲解很多的.   这里就只提一个小问题吧( ...

  6. HDU 3507 Print Article(DP+斜率优化)

     Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  7. DP(斜率优化):HDU 3507 Print Article

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  8. HDU 3507 Print Article(斜率优化DP)

    题目链接 题意 : 一篇文章有n个单词,如果每行打印k个单词,那这行的花费是,问你怎么安排能够得到最小花费,输出最小花费. 思路 : 一开始想的简单了以为是背包,后来才知道是斜率优化DP,然后看了网上 ...

  9. HDU 3507 Print Article(斜率优化)

    显然的斜率优化模型 但是单调队列维护斜率单调性的时候出现了莫名的锅orz 代码 #include <cstdio> #include <algorithm> #include ...

随机推荐

  1. UVA 11551 - Experienced Endeavour(矩阵高速幂)

    UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...

  2. 基于Shading Model(对光照变化一定不变性)的运动目标检测算法

    光照模型(Shading Model)在很多论文中得到了广泛的应用,如robust and illumination invariant change detection based on linea ...

  3. 使用tuple返回多个值

    17.4编写并测试findbook函数 #include<iostream> #include<vector> #include<string> #include& ...

  4. Android(java)学习笔记180:Android MediaPlayer 播放prepareAsync called in state 8解决办法

    使用android MediaPlayer播放音频文件时,有时会出现prepareasync called in state 8错误. 以下方法可以避免这个异常出现.  第一种方法: private ...

  5. C按格式输出数字

    看到有人问如何输出如下格式的字符: //1 6 10 13 15 //2 7 11 14 //3 8 12 //4 9 //5 于是写了一个,以后方便查看. main() { /* rows i j ...

  6. SQL中存储过程的例子

    导读:sql存储是数据库操作过程中比较重要的一个环节,对于一些初学者来说也是比较抽象难理解的,本文我将通过几个实例来解析数据库中的sql存储过程,这样就将抽象的事物形象化,比较容易理解. 例1: cr ...

  7. [DEncrypt] C# DEncrypt加密/解密帮助类(转载)

    点击下载 DEncrypt.rar 这个类是关于加密,解密的操作,文件的一些高级操作1.使用 缺省密钥字符串 加密/解密string2.使用 给定密钥字符串 加密/解密string3.使用 缺省密钥字 ...

  8. Web.xml配置详解之context-param (加载spring的xml,然后初始化bean看的)

    http://www.cnblogs.com/goody9807/p/4227296.html(很不错啊) 容器先加载spring的xml,然后初始化bean时,会为bean赋值,包括里面的占位符

  9. rac中 kull session会话脚本

    方法:ALTER SYSTEM KILL SESSION '80, 6, @2';  --<= 80 sid,6 serial#,@2 inst_id kill session 脚本如下:sel ...

  10. iOS navigationBar导航栏底部与self.view的分界线的隐藏

    ios开发中经常碰到各种需求,比如要求导航栏的颜色和self.view的颜色一样,当我们直接设置navigationBar的颜色和view一样时,我们会发现navigationBar还会有一条分割线留 ...