threadIdx是一个uint3类型,表示一个线程的索引。

blockIdx是一个uint3类型,表示一个线程块的索引,一个线程块中通常有多个线程。

blockDim是一个dim3类型,表示线程块的大小。

gridDim是一个dim3类型,表示网格的大小,一个网格中通常有多个线程块。

下面这张图比较清晰的表示的几个概念的关系:

cuda 通过<<< >>>符号来分配索引线程的方式,我知道的一共有15种索引方式。

下面程序展示了这15种索引方式:

#include "cuda_runtime.h"
#include "device_launch_parameters.h" #include <stdio.h>
#include <stdlib.h>
#include <iostream> using namespace std; //thread 1D
__global__ void testThread1(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = b[i] - a[i];
} //thread 2D
__global__ void testThread2(int *c, const int *a, const int *b)
{
int i = threadIdx.x + threadIdx.y*blockDim.x;
c[i] = b[i] - a[i];
} //thread 3D
__global__ void testThread3(int *c, const int *a, const int *b)
{
int i = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
c[i] = b[i] - a[i];
} //block 1D
__global__ void testBlock1(int *c, const int *a, const int *b)
{
int i = blockIdx.x;
c[i] = b[i] - a[i];
} //block 2D
__global__ void testBlock2(int *c, const int *a, const int *b)
{
int i = blockIdx.x + blockIdx.y*gridDim.x;
c[i] = b[i] - a[i];
} //block 3D
__global__ void testBlock3(int *c, const int *a, const int *b)
{
int i = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
c[i] = b[i] - a[i];
} //block-thread 1D-1D
__global__ void testBlockThread1(int *c, const int *a, const int *b)
{
int i = threadIdx.x + blockDim.x*blockIdx.x;
c[i] = b[i] - a[i];
} //block-thread 1D-2D
__global__ void testBlockThread2(int *c, const int *a, const int *b)
{
int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;
int i = threadId_2D+ (blockDim.x*blockDim.y)*blockIdx.x;
c[i] = b[i] - a[i];
} //block-thread 1D-3D
__global__ void testBlockThread3(int *c, const int *a, const int *b)
{
int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockIdx.x;
c[i] = b[i] - a[i];
} //block-thread 2D-1D
__global__ void testBlockThread4(int *c, const int *a, const int *b)
{
int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;
int i = threadIdx.x + blockDim.x*blockId_2D;
c[i] = b[i] - a[i];
} //block-thread 3D-1D
__global__ void testBlockThread5(int *c, const int *a, const int *b)
{
int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
int i = threadIdx.x + blockDim.x*blockId_3D;
c[i] = b[i] - a[i];
} //block-thread 2D-2D
__global__ void testBlockThread6(int *c, const int *a, const int *b)
{
int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;
int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;
int i = threadId_2D + (blockDim.x*blockDim.y)*blockId_2D;
c[i] = b[i] - a[i];
} //block-thread 2D-3D
__global__ void testBlockThread7(int *c, const int *a, const int *b)
{
int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;
int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockId_2D;
c[i] = b[i] - a[i];
} //block-thread 3D-2D
__global__ void testBlockThread8(int *c, const int *a, const int *b)
{
int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;
int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
int i = threadId_2D + (blockDim.x*blockDim.y)*blockId_3D;
c[i] = b[i] - a[i];
} //block-thread 3D-3D
__global__ void testBlockThread9(int *c, const int *a, const int *b)
{
int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockId_3D;
c[i] = b[i] - a[i];
} void addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = ;
int *dev_b = ;
int *dev_c = ; cudaSetDevice(); cudaMalloc((void**)&dev_c, size * sizeof(int));
cudaMalloc((void**)&dev_a, size * sizeof(int));
cudaMalloc((void**)&dev_b, size * sizeof(int)); cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice); //testThread1<<<1, size>>>(dev_c, dev_a, dev_b); //uint3 s;s.x = size/5;s.y = 5;s.z = 1;
//testThread2 <<<1,s>>>(dev_c, dev_a, dev_b); //uint3 s; s.x = size / 10; s.y = 5; s.z = 2;
//testThread3<<<1, s >>>(dev_c, dev_a, dev_b); //testBlock1<<<size,1 >>>(dev_c, dev_a, dev_b); //uint3 s; s.x = size / 5; s.y = 5; s.z = 1;
//testBlock2<<<s, 1 >>>(dev_c, dev_a, dev_b); //uint3 s; s.x = size / 10; s.y = 5; s.z = 2;
//testBlock3<<<s, 1 >>>(dev_c, dev_a, dev_b); //testBlockThread1<<<size/10, 10>>>(dev_c, dev_a, dev_b); //uint3 s1; s1.x = size / 100; s1.y = 1; s1.z = 1;
//uint3 s2; s2.x = 10; s2.y = 10; s2.z = 1;
//testBlockThread2 << <s1, s2 >> >(dev_c, dev_a, dev_b); //uint3 s1; s1.x = size / 100; s1.y = 1; s1.z = 1;
//uint3 s2; s2.x = 10; s2.y = 5; s2.z = 2;
//testBlockThread3 << <s1, s2 >> >(dev_c, dev_a, dev_b); //uint3 s1; s1.x = 10; s1.y = 10; s1.z = 1;
//uint3 s2; s2.x = size / 100; s2.y = 1; s2.z = 1;
//testBlockThread4 << <s1, s2 >> >(dev_c, dev_a, dev_b); //uint3 s1; s1.x = 10; s1.y = 5; s1.z = 2;
//uint3 s2; s2.x = size / 100; s2.y = 1; s2.z = 1;
//testBlockThread5 << <s1, s2 >> >(dev_c, dev_a, dev_b); //uint3 s1; s1.x = size / 100; s1.y = 10; s1.z = 1;
//uint3 s2; s2.x = 5; s2.y = 2; s2.z = 1;
//testBlockThread6 << <s1, s2 >> >(dev_c, dev_a, dev_b); //uint3 s1; s1.x = size / 100; s1.y = 5; s1.z = 1;
//uint3 s2; s2.x = 5; s2.y = 2; s2.z = 2;
//testBlockThread7 << <s1, s2 >> >(dev_c, dev_a, dev_b); //uint3 s1; s1.x = 5; s1.y = 2; s1.z = 2;
//uint3 s2; s2.x = size / 100; s2.y = 5; s2.z = 1;
//testBlockThread8 <<<s1, s2 >>>(dev_c, dev_a, dev_b); uint3 s1; s1.x = ; s1.y = ; s1.z = ;
uint3 s2; s2.x = size / ; s2.y = ; s2.z = ;
testBlockThread9<<<s1, s2 >>>(dev_c, dev_a, dev_b); cudaMemcpy(c, dev_c, size*sizeof(int), cudaMemcpyDeviceToHost); cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c); cudaGetLastError();
} int main()
{
const int n = ; int *a = new int[n];
int *b = new int[n];
int *c = new int[n];
int *cc = new int[n]; for (int i = ; i < n; i++)
{
a[i] = rand() % ;
b[i] = rand() % ;
c[i] = b[i] - a[i];
} addWithCuda(cc, a, b, n); FILE *fp = fopen("out.txt", "w");
for (int i = ; i < n; i++)
fprintf(fp, "%d %d\n", c[i], cc[i]);
fclose(fp); bool flag = true;
for (int i = ; i < n; i++)
{
if (c[i] != cc[i])
{
flag = false;
break;
}
} if (flag == false)
printf("no pass");
else
printf("pass"); cudaDeviceReset(); delete[] a;
delete[] b;
delete[] c;
delete[] cc; getchar();
return ;
}

这里只保留了3D-3D方式,注释了其余14种方式,所有索引方式均测试通过。

还是能看出一些规律的:)

cuda中threadIdx、blockIdx、blockDim和gridDim的使用的更多相关文章

  1. GPU CUDA编程中threadIdx, blockIdx, blockDim, gridDim之间的区别与联系

    前期写代码的时候都会困惑这个实际的threadIdx(tid,实际的线程id)到底是多少,自己写出来的对不对,今天经过自己一些小例子的推敲,以及找到官网的相关介绍,总算自己弄清楚了. 在启动kerne ...

  2. CUDA中的常量内存__constant__

    GPU包含数百个数学计算单元,具有强大的处理运算能力,可以强大到计算速率高于输入数据的速率,即充分利用带宽,满负荷向GPU传输数据还不够它计算的.CUDA C除全局内存和共享内存外,还支持常量内存,常 ...

  3. CUDA中关于C++特性的限制

    CUDA中关于C++特性的限制 CUDA官方文档中对C++语言的支持和限制,懒得每次看英文文档,自己尝试翻译一下(没有放lambda表达式的相关内容,太过于复杂,我选择不用).官方文档https:// ...

  4. CUDA中并行规约(Parallel Reduction)的优化

    转自: http://hackecho.com/2013/04/cuda-parallel-reduction/ Parallel Reduction是NVIDIA-CUDA自带的例子,也几乎是所有C ...

  5. OpenCV二维Mat数组(二级指针)在CUDA中的使用

    CUDA用于并行计算非常方便,但是GPU与CPU之间的交互,比如传递参数等相对麻烦一些.在写CUDA核函数的时候形参往往会有很多个,动辄达到10-20个,如果能够在CPU中提前把数据组织好,比如使用二 ...

  6. cuda中当数组数大于线程数的处理方法

    参考stackoverflow一篇帖子的处理方法:https://stackoverflow.com/questions/26913683/different-way-to-index-threads ...

  7. CUDA中多维数组以及多维纹理内存的使用

    纹理存储器(texture memory)是一种只读存储器,由GPU用于纹理渲染的图形专用单元发展而来,因此也提供了一些特殊功能.纹理存储器中的数据位于显存,但可以通过纹理缓存加速读取.在纹理存储器中 ...

  8. cuda中当元素个数超过线程个数时的处理案例

    项目打包下载 当向量元素超过线程个数时的情况 向量元素个数为(33 * 1024)/(128 * 128)=2.x倍 /* * Copyright 1993-2010 NVIDIA Corporati ...

  9. CUDA中使用多维数组

    今天想起一个问题,看到的绝大多数CUDA代码都是使用的一维数组,是否可以在CUDA中使用一维数组,这是一个问题,想了各种问题,各种被77的错误状态码和段错误折磨,最后发现有一个cudaMallocMa ...

随机推荐

  1. .NET Framework 源码查看与调试

    1. 直接下载.NET Framework源代码(下载地址),然后用Visual Studio 13 打开查看.2. 在线查看,网址:http://referencesource.microsoft. ...

  2. 命令行下更好显示 mysql 查询结果

    在 linux命令行中,直接进行 mysql查询时,有时查询的结果字段较多,显示的效果就很不友好: 但 mysql支持以另一种方式来显示结果,如下: 普通是 SQL 是以分号 ; 结束的,如果改为 \ ...

  3. INTEST/EXTEST SCAN 的学习

    intest scan的一些基本知识.INTEST scan指的是对IP 内部的scan cell的扫描测试,针对IP内部的flip-flop进行shift/capture的操作.和INTEST SC ...

  4. Spring-IOC注解

    注解主要的目的就是实现零XML配置.一:自动扫描装配Bean. spring为我们引入了组件自动扫描机制,它可以在类路径底下寻找标注了@Component.@Service.@Controller.@ ...

  5. 了解MySQL联表查询中的驱动表,优化查询,以小表驱动大表

    一.为什么要用小表驱动大表 1.驱动表的定义 当进行多表连接查询时, [驱动表] 的定义为: 1)指定了联接条件时,满足查询条件的记录行数少的表为[驱动表] 2)未指定联接条件时,行数少的表为[驱动表 ...

  6. ConcurrentHashMap 源码阅读小结

    前言 每一次总结都意味着重新开始,同时也是为了更好的开始.ConcurrentHashMap 一直是我心中的痛.虽然不敢说完全读懂了,但也看了几个重要的方法,有不少我觉得比较重要的知识点. 然后呢,放 ...

  7. 关于.net程序集引用不匹配的问题

    今天启动asp.net mvc 程序,其中也用到了web api ,autofac等,为了版本兼容性问题,将mvc和 web api 的版本控制到5.2.0.0,Newtonsoft.Json 的版本 ...

  8. sqlhelper中事务的简单用法

    sql1="INSERT INTO tablename(Id,col1,col2) VALUES(@Id,@col1,@col2) update tablename2 set col=@co ...

  9. PHP开发环境安装说明书

    php安装说明书 需要安装包可以拿U盘找技术--小豪拷贝. 一.安装对象和安装顺序 0   vcredist_x64.exe(Microsoft Visual C++ 运行时文件和操作系统组件) 1 ...

  10. Java基础——Servlet(四)

    最近一直在学习Servlet,真的有烦躁,一下子要创建好几个文件,服务端.客户端.html页面....学习进度蛮慢的,很容易失掉信心.当学习到cookie时,发现有好多实现是在我们日常生活中可以会遇得 ...