PR(Precision-Recall)曲线和mAP指标
来自:
https://www.zhihu.com/question/41540197
https://www.douban.com/note/518998773/
链接:https://www.zhihu.com/question/41540197/answer/91698989
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
在图像中,尤其是分类问题中应用AP,是一种评价ranking方式好不好的指标:
举例来说,我有一个两类分类问题,分别5个样本,如果这个分类器性能达到完美的话,ranking结果应该是+1,+1,+1,+1,+1,-1,-1,-1,-1,-1.
但是分类器预测的label,和实际的score肯定不会这么完美。按照从大到小来打分,我们可以计算两个指标:precision和recall。比如分类器认为打分由高到低选择了前四个,实际上这里面只有两个是正样本。此时的recall就是2(你能包住的正样本数)/5(总共的正样本数)=0.4,precision是2(你选对了的)/4(总共选的)=0.5.
图像分类中,这个打分score可以由SVM得到:s=w^Tx+b就是每一个样本的分数。
从上面的例子可以看出,其实precision,recall都是选多少个样本k的函数,很容易想到,如果我总共有1000个样本,那么我就可以像这样计算1000对P-R,并且把他们画出来,这就是PR曲线:
这里有一个趋势,recall越高,precision越低。这是很合理的,因为假如说我把1000个全拿进来,那肯定正样本都包住了,recall=1,但是此时precision就很小了,因为我全部认为他们是正样本。recall=1时的precision的数值,等于正样本所占的比例。
所以AP,average precision,就是这个曲线下的面积,这里average,等于是对recall取平均。而mean average precision的mean,是对所有类别取平均(每一个类当做一次二分类任务)。现在的图像分类论文基本都是用mAP作为标准。
1.使用AP会比accuracy要合理。对于accuracy,如果有9个负样本和一个正样本,那么即使分类器什么都不做全部判定为负样本accuracy也有90%。但是对于AP,recall=1那个点precision会掉到0.1.曲线下面积就会反映出来。
2.在实际中计算AP时,如果是matlab的话,可以直接调用vl_feat中的vl_pr:VLFeat - Tutorials
这里面详细地给出了概念的解释以及计算方式。
在机器学习中,ROC(Receiver Operator Characteristic)曲线被广泛应用于二分类问题中来评估分类器的可信度,但是当处理一些高度不均衡的数据集时,PR曲线能表现出更多的信息,发现更多的问题。
1.ROC曲线和PR曲线是如何画出来的?
在二分类问题中,分类器将一个实例的分类标记为是或否,这可以用一个混淆矩阵来表示。混淆矩阵有四个分类,如下表:
actual positive actual negative
predicted positive TP FP
predicted negative FN TN
其中,列对应于实例实际所属的类别,行表示分类预测的类别。
TP(True Positive):指正确分类的正样本数,即预测为正样本,实际也是正样本。
FP(False Positive):指被错误的标记为正样本的负样本数,即实际为负样本而被预测为正样本,所以是False。
TN(True Negative):指正确分类的负样本数,即预测为负样本,实际也是负样本。
FN(False Negative):指被错误的标记为负样本的正样本数,即实际为正样本而被预测为负样本,所以是False。
TP+FP+TN+FN:样本总数。
TP+FN:实际正样本数。
TP+FP:预测结果为正样本的总数,包括预测正确的和错误的。
FP+TN:实际负样本数。
TN+FN:预测结果为负样本的总数,包括预测正确的和错误的。
这里面的概念有些绕,需要慢慢理解,/(ㄒoㄒ)/~~。以这四个基本指标可以衍生出多个分类器评价指标,如下图:

在PR曲线中,以Recall(貌似翻译为召回率或者查全率)为x轴,Precision为y轴。Recall与TPR的意思相同,而Precision指正确分类的正样本数占总正样本的比例。如下图:

PR(Precision-Recall)曲线和mAP指标的更多相关文章
- 机器学习:评价分类结果(Precision - Recall 的平衡、P - R 曲线)
一.Precision - Recall 的平衡 1)基础理论 调整阈值的大小,可以调节精准率和召回率的比重: 阈值:threshold,分类边界值,score > threshold 时分类为 ...
- Handling skewed data---trading off precision& recall
preision与recall之间的权衡 依然是cancer prediction的例子,预测为cancer时,y=1;一般来说做为logistic regression我们是当hθ(x)>=0 ...
- 目标检测的评价标准mAP, Precision, Recall, Accuracy
目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...
- 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy 真实结果 1 ...
- 查准与召回(Precision & Recall)
Precision & Recall 先看下面这张图来理解了,后面再具体分析.下面用P代表Precision,R代表Recall 通俗的讲,Precision 就是检索出来的条目中(比如网页) ...
- TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area,
TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area, https://www.zhihu.com/question/30643044 T/ ...
- Classification week6: precision & recall 笔记
华盛顿大学 machine learning :classification 笔记 第6周 precision & recall 1.accuracy 局限性 我们习惯用 accuracy ...
- Precision,Recall,F1的计算
Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...
- 机器学习--如何理解Accuracy, Precision, Recall, F1 score
当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...
随机推荐
- JavaEE进阶——全文检索之Solr7.4服务器
I. Solr Solr简介 Solr是Apache的顶级开源项目,使用java开发 ,基于Lucene的全文检索服务器. Solr比Lucene提供了更多的查询语句,而且它可扩展.可配置,同时它对L ...
- Python中的线程和进程
引入进程和线程的概念及区别 threading模块提供的类: Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, l ...
- 微信小程序自定义微信客服按钮
微信小程序官方api中提到的微信客服,是一个固定的组件,图标样式固定,大小最多27px 很明显这个是不能满足我们各种奇葩需求的.下面提供一个野蛮的自定义方法. 比如做一个这样的按钮: 图标用自定义的, ...
- Ubuntu安装MyEclise16 过程差不多
选择好安装路径,和workpace路径,可能会因为工作空间放的位置不太对,导致myeclipse出现问题. 1.Ubuntu安装MyEclise10 不知道为什么网上会有那么多安装过程,还有配置目录和 ...
- Robot Operating System (ROS)学习笔记---创建简单的机器人模型smartcar
搭建环境:XMWare Ubuntu14.04 ROS(indigo) 转载自古月居 转载连接:http://www.guyuehome.com/243 一.创建硬件描述包 已创建catkin_ ...
- windows python读取grib2数据
一.环境准备 (1).python3环境 (2).wgirb工具(用于读取grib1文件),下载地址: ftp://ftp.cpc.ncep.noaa.gov/wd51we/wgrib (3).wg ...
- 【Social listening实操】如何运用免费的大数据工具获得行业洞察?
本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 当我们想要创业却对市场行情不甚了解,该如何迅速了解市场行情 ...
- IBeacon协议分析
IBeacon协议分析 跳转至: 导航. 搜索 对于一个UUID是E2C56DB5-DFFB-48D2-B060-D0F5A71096E0, major是0, minjor是0的iBeacon,此时的 ...
- ISO7816之管脚定义
卡座的管脚定义 如果使用示波器或者逻辑分析仪来观察 连接C3.C5.C7 小技巧当C3为3.57MHZ时候,可以使用波特率为9600的串口来监听.
- nohup php -f xx.php &
nohup php -f xx.php &