Problem D: Cutting tabletops

Bever
Lumber hires beavers to cut wood. The company has recently received a shippment of tabletops. Each tabletop is a convex polygon. However, in this hard economic times of cutting costs the company has ordered
the tabletops from a not very respectable but cheap supplier. Some of the tabletops have the right shape but they are slightly too big. The beavers have to chomp of a strip of wood of a fixed width from each edge of the tabletop such that they get a tabletop
of a similar shape but smaller. Your task is to find the area of the tabletop after beavers are done.

Input consists of a number of cases each presented on a separate line. Each line consists of a sequence of numbers. The first number is d the width of the strip of wood to be cut off of each edge
of the tabletop in centimeters. The next number n is an integer giving the number of vertices of the polygon. The next npairs of numbers present xi and yi coordinates
of polygon vertices for 1 <= i <= n given in clockwise order. A line containing only two zeroes terminate the input.

d is much smaller than any of the sides of the polygon. The beavers cut the edges one after another and after each cut the number of vertices of the tabletop is the same.

For each line of input produce one line of output containing one number to three decimal digits in the fraction giving the area of the tabletop after cutting.

Sample input

2 4 0 0 0 5 5 5 5 0
1 3 0 0 0 5 5 0
1 3 0 0 3 5.1961524 6 0
3 4 0 -10 -10 0 0 10 10 0
0 0

Output for sample input

1.000
1.257
2.785
66.294

Problem Setter: Piotr Rudnicki

题目大意:

顺时针给定你一个凸多边形。问你削去d距离后,这个凸多边形的面积

解题思路:

也就是原来的凸包面积减去全部以凸包边为长度高为d的矩形面积加上多去除的部分(也就是1,2,3,4,5的面积),就是答案

解题代码:

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std; struct point{
double x,y;
point(double x0=0,double y0=0){x=x0;y=y0;}
double xchen(point p){//this X P
return x*p.y-p.x*y;
}
double dchen(point p){//this X P
return x*p.x+y*p.y;
}
double getlen(){
return sqrt ( x*x+y*y );
}
double getdis(point p){
return sqrt( (x-p.x)*(x-p.x) + (y-p.y)*(y-p.y) );
}
}; const double eps=1e-7;
double d;
int n;
vector <point> p; void input(){
p.resize(n);
for(int i=0;i<n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
}
} void solve(){
double sum=0;
for(int i=1;i<n-1;i++){
point p1=point(p[i].x-p[0].x,p[i].y-p[0].y);
point p2=point(p[i+1].x-p[0].x,p[i+1].y-p[0].y);
sum+=fabs(p2.xchen(p1))/2.0;
}
for(int i=0;i<n;i++){
double dis=p[i].getdis(p[(i+n-1)%n]);
sum-=dis*d;
}
for(int i=0;i<n;i++){
int t1=((i-1)+n)%n,t2=((i+1)+n)%n;
point p1=point(p[t1].x-p[i].x,p[t1].y-p[i].y);
point p2=point(p[t2].x-p[i].x,p[t2].y-p[i].y);
double degree=acos( p1.dchen(p2)/p1.getlen()/p2.getlen() ) /2.0;
double area=d/(tan(degree) )*d;
sum+=area;
}
printf("%.3lf\n",sum);
} int main(){
while(scanf("%lf%d",&d,&n)!=EOF){
if(fabs(d-0.0)<eps && n==0) break;
input();
solve();
}
return 0;
}

uva 10406 Cutting tabletops的更多相关文章

  1. uva 10003 Cutting Sticks 【区间dp】

    题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...

  2. UVA 10003 Cutting Sticks 区间DP+记忆化搜索

    UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...

  3. UVa 10003 - Cutting Sticks(区间DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. UVA 10003 Cutting Sticks 切木棍 dp

    题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费. 这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗? 题目其实就是把n+1根 ...

  5. UVA 10003 Cutting Sticks

    题意:在给出的n个结点处切断木棍,并且在切断木棍时木棍有多长就花费多长的代价,将所有结点切断,并且使代价最小. 思路:设DP[i][j]为,从i,j点切开的木材,完成切割需要的cost,显然对于所有D ...

  6. uva 10003 Cutting Sticks(区间DP)

    题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...

  7. UVA 10003 Cutting Sticks(区间dp)

    Description    Cutting Sticks  You have to cut a wood stick into pieces. The most affordable company ...

  8. UVA - 10003 Cutting Sticks(切木棍)(dp)

    题意:有一根长度为L(L<1000)的棍子,还有n(n < 50)个切割点的位置(按照从小到大排列).你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每次切割的费用 ...

  9. uva 10003 Cutting Sticks (区间dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接:  打开 题目大意 一根长为l的木棍,上面有n个"切点",每个点的位置为c[i] 要按照一 ...

随机推荐

  1. MXNet深度学习库简介

    MXNet深度学习库简介 摘要: MXNet是一个深度学习库, 支持C++, Python, R, Scala, Julia, Matlab以及JavaScript等语言; 支持命令和符号编程; 可以 ...

  2. Little-endian和Big-endian

    谈到字节序的问题,必然牵涉到两大CPU派系.那就是Motorola的PowerPC系列CPU和Intel的x86系列CPU.PowerPC系列采用big endian方式存储数据,而x86系列则采用l ...

  3. java安装1.8的经验和Error: Registry key 'Software\JavaSoft\Java Runtime Environment'\CurrentVers问题处理

            java安装1.8后的问题:之前安装了jdk1.7和jdk1.6,之后又安装jdk1.8,然后执行java -version,输出的是1.8的,后来在注册表把jdk1.8改为1.7,然 ...

  4. 【转】Git命令大全(非常齐全)

    $ git init  // 初始化一个Git仓库$ git status   // 查看仓库的状态$ git add .   // 将所有修改添加到暂存区$ git add *  // Ant风格添 ...

  5. PLSQL Developer 中文显示乱码的解决方法

    PLSQL Developer 中文显示乱码是因为 Oracle 数据库所用的编码和 PLSQL Developer 所用的编码不同所导致的. 解决方法: 1. 先查询 Oracle 所用的编码 se ...

  6. 【LeetCode】287. Find the Duplicate Number

    Difficulty:medium  More:[目录]LeetCode Java实现 Description Given an array nums containing n + 1 integer ...

  7. 【转】HTML5 API——无刷新更新地址 history.pushState/replaceState 方法

    (window.location)在通过JavaScript更改以后,浏览器都会通过刷新来到达你更改后的URL(location的意思就是位 置..) 而在JavaScript MVC开始流行之后,通 ...

  8. 025.Zabbix之SNMP监控

    一 SNMP介绍及配置 1.1 SNMP介绍参考其他笔记 1.2 SNMP配置 [SW1]int vlan 1 [SW1-Vlanif1]ip address 172.24.8.13 24 [SW1- ...

  9. JedisConnectionException: java.net.ConnectException: Connection refused

    出现问题 我遇到的一个问题,在连接redis的时候出现了错误!错误如下: JedisConnectionException: java.net.ConnectException: Connection ...

  10. Linux下多节点SSH无密码互联实现

    需求:有3个主机192.168.0.191.192.168.0.192.192.168.0.193,需要实现无密码ssh互联访问 我使用的是root用户进行操作的: 1.每个节点分别检查是否安装ope ...