uva 10406 Cutting tabletops
Problem D: Cutting tabletops

Bever
Lumber hires beavers to cut wood. The company has recently received a shippment of tabletops. Each tabletop is a convex polygon. However, in this hard economic times of cutting costs the company has ordered
the tabletops from a not very respectable but cheap supplier. Some of the tabletops have the right shape but they are slightly too big. The beavers have to chomp of a strip of wood of a fixed width from each edge of the tabletop such that they get a tabletop
of a similar shape but smaller. Your task is to find the area of the tabletop after beavers are done.
Input consists of a number of cases each presented on a separate line. Each line consists of a sequence of numbers. The first number is d the width of the strip of wood to be cut off of each edge
of the tabletop in centimeters. The next number n is an integer giving the number of vertices of the polygon. The next npairs of numbers present xi and yi coordinates
of polygon vertices for 1 <= i <= n given in clockwise order. A line containing only two zeroes terminate the input.
d is much smaller than any of the sides of the polygon. The beavers cut the edges one after another and after each cut the number of vertices of the tabletop is the same.
For each line of input produce one line of output containing one number to three decimal digits in the fraction giving the area of the tabletop after cutting.
Sample input
2 4 0 0 0 5 5 5 5 0
1 3 0 0 0 5 5 0
1 3 0 0 3 5.1961524 6 0
3 4 0 -10 -10 0 0 10 10 0
0 0
Output for sample input
1.000
1.257
2.785
66.294
Problem Setter: Piotr Rudnicki
题目大意:
顺时针给定你一个凸多边形。问你削去d距离后,这个凸多边形的面积
解题思路:
也就是原来的凸包面积减去全部以凸包边为长度高为d的矩形面积加上多去除的部分(也就是1,2,3,4,5的面积),就是答案
解题代码:
#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std; struct point{
double x,y;
point(double x0=0,double y0=0){x=x0;y=y0;}
double xchen(point p){//this X P
return x*p.y-p.x*y;
}
double dchen(point p){//this X P
return x*p.x+y*p.y;
}
double getlen(){
return sqrt ( x*x+y*y );
}
double getdis(point p){
return sqrt( (x-p.x)*(x-p.x) + (y-p.y)*(y-p.y) );
}
}; const double eps=1e-7;
double d;
int n;
vector <point> p; void input(){
p.resize(n);
for(int i=0;i<n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
}
} void solve(){
double sum=0;
for(int i=1;i<n-1;i++){
point p1=point(p[i].x-p[0].x,p[i].y-p[0].y);
point p2=point(p[i+1].x-p[0].x,p[i+1].y-p[0].y);
sum+=fabs(p2.xchen(p1))/2.0;
}
for(int i=0;i<n;i++){
double dis=p[i].getdis(p[(i+n-1)%n]);
sum-=dis*d;
}
for(int i=0;i<n;i++){
int t1=((i-1)+n)%n,t2=((i+1)+n)%n;
point p1=point(p[t1].x-p[i].x,p[t1].y-p[i].y);
point p2=point(p[t2].x-p[i].x,p[t2].y-p[i].y);
double degree=acos( p1.dchen(p2)/p1.getlen()/p2.getlen() ) /2.0;
double area=d/(tan(degree) )*d;
sum+=area;
}
printf("%.3lf\n",sum);
} int main(){
while(scanf("%lf%d",&d,&n)!=EOF){
if(fabs(d-0.0)<eps && n==0) break;
input();
solve();
}
return 0;
}
uva 10406 Cutting tabletops的更多相关文章
- uva 10003 Cutting Sticks 【区间dp】
题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...
- UVA 10003 Cutting Sticks 区间DP+记忆化搜索
UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...
- UVa 10003 - Cutting Sticks(区间DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 10003 Cutting Sticks 切木棍 dp
题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费. 这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗? 题目其实就是把n+1根 ...
- UVA 10003 Cutting Sticks
题意:在给出的n个结点处切断木棍,并且在切断木棍时木棍有多长就花费多长的代价,将所有结点切断,并且使代价最小. 思路:设DP[i][j]为,从i,j点切开的木材,完成切割需要的cost,显然对于所有D ...
- uva 10003 Cutting Sticks(区间DP)
题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...
- UVA 10003 Cutting Sticks(区间dp)
Description Cutting Sticks You have to cut a wood stick into pieces. The most affordable company ...
- UVA - 10003 Cutting Sticks(切木棍)(dp)
题意:有一根长度为L(L<1000)的棍子,还有n(n < 50)个切割点的位置(按照从小到大排列).你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每次切割的费用 ...
- uva 10003 Cutting Sticks (区间dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: 打开 题目大意 一根长为l的木棍,上面有n个"切点",每个点的位置为c[i] 要按照一 ...
随机推荐
- java 捕获所有异常
1.) 通过捕获异常类型的基类Exception就可以处理所有类型的异常.(事实上还有其它的基类,但Exception是同编程活动相关的基类) 2.)因为Exception是与编程有关的所有异常类的基 ...
- Angular快速学习笔记(4) -- Observable与RxJS
介绍RxJS前,先介绍Observable 可观察对象(Observable) 可观察对象支持在应用中的发布者和订阅者之间传递消息. 可观察对象可以发送多个任意类型的值 -- 字面量.消息.事件. 基 ...
- Codeforces 623B Array GCD
Array GCD 最后的序列里肯定有a[1], a[1]-1, a[1]+1, a[n], a[n]-1, a[n]+1中的一个,枚举质因子, dp去check #include<bits/s ...
- Spark streaming的正确使用。。
转自http://bit1129.iteye.com/blog/2198531 代码如下: package spark.examples.streaming import java.sql.{Prep ...
- 010.KVM虚机冷迁移
一 实验环境 原虚机名称:vm01-centos6.8 原虚机所在宿主机:kvm-host-2 迁移后虚机名称:vm01-cloud-centos6.8 迁移后虚机所在宿主机:kvm-host-2 二 ...
- Git的一些常用命令
一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 简单的说就是托管代码的便于多人开发的管理系统. 二.Git的一些命令,我详细的说一下 我是基于github给大家说一下git的一些常 ...
- Codeforces.786B.Legacy(线段树优化建图 最短路Dijkstra)
题目链接 \(Description\) 有\(n\)个点.你有\(Q\)种项目可以选择(边都是有向边,每次给定\(t,u,v/lr,w\)): t==1,建一条\(u\to v\)的边,花费\(w\ ...
- Atcoder Tenka1 Programmer Contest 2019 题解
link 题面真简洁 qaq C Stones 最终一定是连续一段 . 加上连续一段 # .直接枚举断点记录前缀和统计即可. #include<bits/stdc++.h> #define ...
- python3 开发面试题(面向对象)6.6
""" 封装.继承.多态 1. 谈谈你对面向对象的理解? 2. Python面向对象中的继承有什么特点? 3. 面向对象深度优先和广度优先是什么? 4. 面向对象中sup ...
- CentOS启动OpenVPN报错:Failed to start OpenVPN Robust And Highly Flexible Tunneling Application On server.
tailf /var/log/openvpn.log 查看日志,里面有最详细的错误解说. 参考: https://forums.openvpn.net/viewtopic.php?t=21561