http://www.lydsy.com/JudgeOnline/problem.php?id=3569 (题目链接)

题意

  给出一个无向图,$Q$组询问,每次询问将原图断掉$C$条边后是否还连通。在线版。

Solution

  神思路。

  我们找到这个图的任意一棵生成树,然后对于每条非树边将其的权值赋为一个随机数。

  对于每条树边,我们将这条树边的权值设为所有覆盖这条树边的边权的异或和。

  那么图不连通当且仅当删除一条树边和覆盖这条树边的所有边集,而由于刚才的处理一条树边和覆盖这条边的所有边集的异或和为零。

  于是问题转化成了对于给定的k条边是否存在一个边权的异或和为零的子集,果断高斯消元,由于使用了随机化所以碰撞率极低。

  ——PoPoQQQ

  好像就是tmp大爷上次说的方法,长见识了。

细节

  种子设大一点?(这不废话)

代码

// bzoj3569
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=500010;
int fa[maxn],fe[maxn],head[maxn],c[maxn],cnt,n,m,Q;
struct data {int u,v,w,tp;}d[maxn];
struct edge {int to,next,w;}e[maxn]; int find(int x) {
return fa[x]==x ? x : fa[x]=find(fa[x]);
}
void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],w};head[v]=cnt;
}
void dfs(int x,int fa) {
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa) {
fe[e[i].to]=e[i].w;
dfs(e[i].to,x);
}
}
int Dfs(int x,int fa) {
int tmp=0;
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa) {
d[e[i].w].w^=Dfs(e[i].to,x);
tmp^=d[e[i].w].w;
}
return tmp;
}
int Gauss(int p) {
for (int now=0,i=1<<30;i;i>>=1) {
int k=now+1;
while (!(c[k]&i) && k<=p) k++;
if (k==p+1) continue;
swap(c[++now],c[k]);
for (int j=1;j<=p;j++) if (j!=now && c[j]&i) c[j]^=c[now];
}
return c[p] ? 1 : 0;
}
int main() {
srand(987532631);
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=1;i<=m;i++) {
scanf("%d%d",&d[i].u,&d[i].v);
if (find(d[i].u)!=find(d[i].v)) {
fa[find(d[i].u)]=find(d[i].v),d[i].tp=1;
link(d[i].u,d[i].v,i);
}
}
dfs(1,0);
for (int i=1;i<=m;i++) if (!d[i].tp) {
d[i].w=rand();
d[fe[d[i].u]].w^=d[i].w;
d[fe[d[i].v]].w^=d[i].w;
}
Dfs(1,0);
scanf("%d",&Q);
for (int ans=0,i=1,k;i<=Q;i++) {
scanf("%d",&k);
for (int j=1;j<=k;j++) scanf("%d",&c[j]),c[j]^=ans;
for (int j=1;j<=k;j++) c[j]=d[c[j]].w;
int pd=Gauss(k);
ans+=pd;
puts(pd ? "Connected" : "Disconnected");
}
return 0;
}

【bzoj3569】 DZY Loves Chinese II的更多相关文章

  1. 【BZOJ3569】DZY Loves Chinese II

    [BZOJ3569]DZY Loves Chinese II 题面 bzoj 题目大意: 给你一张\(N(1\leq N\leq 10^5)\)个点\(M(1\leq M\leq 5\times 10 ...

  2. 【题解】DZY Loves Chinese

    [题解]DZY Loves Chinese II 不吐槽这题面了... 考虑如何维护图的连通性,如果把图的变成一颗的\(dfs\)生成树,那么如果把一个节点的父边和他接下来所有的返祖边删除,那么我们就 ...

  3. 【BZOJ3563/BZOJ3569】DZY Loves Chinese I/II(随机化,线性基)

    [BZOJ3563/BZOJ3569]DZY Loves Chinese I/II(随机化,线性基) 题面 搞笑版本 正经版本 题面请自行观赏 注意细节. 题解 搞笑版本真的是用来搞笑的 所以我们来讲 ...

  4. 【BZOJ3563/3569】DZY Loves Chinese II 线性基神题

    [BZOJ3563/3569]DZY Loves Chinese II Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以 ...

  5. 【BZOJ 3569】DZY Loves Chinese II 随机化+线性基

    用到一个结论——[先建树,再给每个非树边一个权值,每个树边的权值为覆盖他的非树边的权值的异或和,然后如果给出的边存在一个非空子集异或和为0则不连通,否则连通](必须保证每条边的出现和消失只能由自己产生 ...

  6. 【BZOJ 3569】DZY Loves Chinese II

    题面 Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图 ...

  7. 【BZOJ 3569】 DZY Loves Chinese II

    题目连接: 传送门 题解: 先%一发大佬的题解. 考虑一个图,删除一些边以后不连通的条件为,某个联通块与外界所有连边都被删掉,而不只是生成树中一个树边与所以覆盖它的非树边(很容易举出反例). 那么考虑 ...

  8. [BZOJ3569]DZY Loves Chinese II(随机化+线性基)

    3569: DZY Loves Chinese II Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1515  Solved: 569[Submit][S ...

  9. 【BZOJ3561】DZY Loves Math VI (数论)

    [BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...

随机推荐

  1. Kafka下的生产消费者模式与订阅发布模式

    原文:https://blog.csdn.net/zwgdft/article/details/54633105   在RabbitMQ下的生产消费者模式与订阅发布模式一文中,笔者以“数据接入”和“事 ...

  2. 网络对抗技术 2017-2018-2 20152515 Exp7 信息搜集与漏洞扫描

    1. 实践内容(3.5分) 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. DNS欺骗就是攻击者冒充域名服务器的一种欺骗行为. 原理:如果可以冒充域名服务器,然后把查询的 ...

  3. 20155328 《网络对抗》 实验八:Web基础

    20155328 <网络对抗> 实验八:Web基础 实验内容及过程记录 一.Web前端HTML 我们的kali是默认安装好了apache的.首先输入netstat -tupln |grep ...

  4. VS新建一个模板工程

    新建一个模板工程的好处:    1.就不用每次都走一边新建向导了,新建工程一步到位. 2.可以往项目中每次都的输入的代码,如一些声明注释-- 效果图: 具体步骤: 1.自己先新建一个属于自己的工程. ...

  5. python 相对路径导入 与 绝对路径导入

    我的理解: 假设有一个文件夹 app 若 app 下有app/__init__.py文件,则此 app 被视作一个 package,而 app 下的其他文件/文件夹被视作 module 我们知道,pa ...

  6. Caffe 深度学习框架上手教程

    Caffe 深度学习框架上手教程   blink 15年1月   Caffe (CNN, deep learning) 介绍 Caffe -----------Convolution Architec ...

  7. Centos7下python3安装ipython

    一.通过压缩包安装ipython 1.下载ipython安装包 [root@localhost ~]# wget https://pypi.python.org/packages/79/63/b671 ...

  8. java Script复习总结

    一:基础知识 1.JavaScript语言的历史 l  早期名称:livescript l  开发公司:网景公司(netscape) 2.JavaScript语言的基本特点 l  基于对象 l  事件 ...

  9. allegro 基本步骤

    PCB 1.建立电路板 首先是打开PCB编辑器——开始--所有程序-- Allegro SPB 15.5--PCB Editor,在弹出的对话框中选择Allegro PCB Design 610(PC ...

  10. python图像处理 模式转化简单总结

    图像处理库PIL有九种不同模式:1,L,P,RGB,RGBA,CMYK,YCbCr,I,F 1.模式“1” 模式“1”为二值图像,非黑即白.但是它每个像素用8个bit表示,0表示黑,255表示白. 2 ...