传送门

BZOJ 4569

题解

ST表和并查集是我认为最优雅(其实是最好写……)的两个数据结构。

然鹅!他俩加一起的这道题,我却……没有做出来……

咳咳。

正解是这样的:

类似ST表有\(\log n\)层一样,我们开\(\log n\)个并查集。当已知\([l_1, r_1]\)和\([l_2, r_2]\)相同的时候,设\(j = \lfloor \log (r_1 - l_1 + 1) \rfloor\),把\(l_1, l_2\)在\(j\)这层的并查集中合并,把\(r_1 - 2^j + 1, r_2 - 2^j + 1\)也在\(j\)这层并查集中合并。

最后是要下放的。下方时,从大到小枚举\(j\),在\(j - 1\)这层并查集中合并\(i, fa[i][j]\)以及\(i + 2^{j - 1}, fa[i][j] + 2 ^ {j - 1}\)。

最后统计有多少不同的\(fa[i][0]\)即可,设有\(x\)个,则答案是\(9 * 10^{x - 1}\),因为第一位不能是0。

我犯了个低级失误,就是最后统计有多少不同的\(fa[i][0]\)时,我打的真的是\(fa[i][0]\),其实这里一定要findfa(i, 0)。。。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <ctime>
#include <cstdlib>
using namespace std;
typedef unsigned long long ll;
#define enter putchar('\n')
#define space putchar(' ')
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c > '9' || c < '0')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 100005, P = 1000000007;
int n, m, lg[N], fa[N][20];
bool vis[N];
ll ans = 9;
void init(){
for(int i = 1, j = 0; i <= n; i++)
lg[i] = i == (1 << (j + 1)) ? ++j : j;
for(int j = 0; (1 << j) <= n; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
fa[i][j] = i;
}
int findfa(int u, int j){
return fa[u][j] == u ? u : fa[u][j] = findfa(fa[u][j], j);
}
void merge(int u, int v, int j){
if(findfa(u, j) != findfa(v, j))
fa[fa[v][j]][j] = fa[u][j];
}
void merge(int l1, int r1, int l2, int r2){
int j = lg[r1 - l1 + 1];
merge(l1, l2, j);
merge(r1 - (1 << j) + 1, r2 - (1 << j) + 1, j);
}
int main(){
read(n), read(m);
init();
while(m--){
int l1, r1, l2, r2;
read(l1), read(r1), read(l2), read(r2);
merge(l1, r1, l2, r2);
}
for(int j = lg[n]; j; j--)
for(int i = 1; i + (1 << j) - 1 <= n; i++){
merge(i, fa[i][j], j - 1);
merge(i + (1 << (j - 1)), fa[i][j] + (1 << (j - 1)), j - 1);
}
for(int i = 1; i <= n; i++)
vis[findfa(i, 0)] = 1;
for(int i = 1, fir = 1; i <= n; i++)
if(vis[i]){
if(fir) fir = 0;
else ans = ans * 10 % P;
}
write(ans), enter;
return 0;
}

BZOJ 4569 [Scoi2016]萌萌哒 | ST表 并查集的更多相关文章

  1. BZOJ 4569 [Scoi2016]萌萌哒 ——ST表 并查集

    好题. ST表又叫做稀疏表,这里利用了他的性质. 显然每一个条件可以分成n个条件,显然过不了. 然后发现有许多状态是重复的,首先考虑线段树,没什么卵用. 然后ST表,可以每一层表示对应的区间大小的两个 ...

  2. 【BZOJ 4569】 4569: [Scoi2016]萌萌哒 (倍增+并查集)

    4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 865  Solved: 414 Description 一个长 ...

  3. 【BZOJ-4569】萌萌哒 ST表 + 并查集

    4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 459  Solved: 209[Submit][Status] ...

  4. bzoj 4569 [Scoi2016]萌萌哒 并查集 + ST表

    题目链接 Description 一个长度为\(n\)的大数,用\(S_1S_2S_3...S_n\)表示,其中\(S_i\)表示数的第\(i\)位,\(S_1\)是数的最高位,告诉你一些限制条件,每 ...

  5. bzoj4569: [Scoi2016]萌萌哒(ST表+并查集)

    好喵喵的题 将一个要求用ST表分割成logn个要求,如果把f[i][j]和f[u][v]在同一个集合,那么f[i][j-1]和f[u][v-1],f[i+2^(j-1)][j-1]和f[u][u+2^ ...

  6. bzoj 4569: [Scoi2016]萌萌哒

    Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条 件表示为四个数,l1,r1,l2,r2,即两个长度相同的 ...

  7. BZOJ4569 SCOI2016萌萌哒(倍增+并查集)

    一个显然的暴力是用并查集记录哪些位之间是相等的.但是这样需要连nm条边,而实际上至多只有n条边是有用的,冗余过多. 于是考虑优化.使用类似st表的东西,f[i][j]表示i~i+2^j-1与f[i][ ...

  8. 洛谷P3295 [SCOI2016]萌萌哒(倍增+并查集)

    传送门 思路太妙了啊…… 容易才怪想到暴力,把区间内的每一个数字用并查集维护相等,然后设最后总共有$k$个并查集,那么答案就是$9*10^{k-1}$(因为第一位不能为0) 考虑倍增.我们设$f[i] ...

  9. [SCOI2016]萌萌哒(倍增+并查集)

    当区间\([a,b]\)和\([c,d]\)对应相等时. 我们把两个区间对应位置上的数所在并查集合并. 最后并查集的数量为\(num\)答案就是\(9*10^num\)因为是个数,不能有前置\(0\) ...

随机推荐

  1. Json.NET序列化后包含类型,保证序列化和反序列化的对象类型相同(转载)

    This sample uses the TypeNameHandlingsetting to include type information when serializing JSON and r ...

  2. ListBox项模板中绑定ListBoxItem属性的方法

    原文:ListBox项模板中绑定ListBoxItem属性的方法 <ListBox> <ListBox.ItemTemplate> <DataTemplate> & ...

  3. 当系统扩展遇到违背OO的里氏原则(LSP)的时候怎么办 ?

    先转一篇写得很好的文章:http://www.cnblogs.com/CodeGuy/archive/2012/03/26/2418803.html ========================= ...

  4. Python中类和对象在内存中是如何保存?

    类以及类中的方法在内存中只有一份,而根据类创建的每一个对象都在内存中需要存一份,大致如下图: 如上图所示,根据类创建对象时,对象中除了封装 name 和 age 的值之外,还会保存一个类对象指针,该值 ...

  5. R绘图 第四篇:绘制箱图(ggplot2)

    箱线图通过绘制观测数据的五数总括,即最小值.下四分位数.中位数.上四分位数以及最大值,描述了变量值的分布情况.箱线图能够显示出离群点(outlier),离群点也叫做异常值,通过箱线图能够很容易识别出数 ...

  6. chrome播放m3u8視頻失败

    由于项目后台需要播放m3u8视频,但此视频格式在移动端和Safari支持比较友善但是PC浏览器中都不太尽如人意,所以想在Chrome中播放只能借助第三方插件来播放. 有一款Video.js插件极大的简 ...

  7. MVC模式简单的Xml文档解析加Vue渲染

    前端代码: <script src="~/Js/jquery-3.3.1.min.js"></script> <script src="~/ ...

  8. 如何自出版一本书:定制 bookdown

    目录 如何自出版一本书:定制 bookdown bookdown 的第一步 亚马逊 Kindle 格式 创建书籍 _bookdown.yml 注意行宽 写在每个 .Rmd 文件的开头 index.Rm ...

  9. java中多态的实现机制

    多态的概念: 简单来说就是事物在运行过程中存在的不同状态,即父类或接口定义的引用变量指向子类或具体实现类的实例对象.程序调用方法在运行期才进行动态绑定,而不是引用变量的类型中定义的方法. 多态存在的前 ...

  10. 【文章存档】如何通过 GitLab 进行持续部署

    好久没写博客了,这几天存档一下新文章. 链接 https://docs.azure.cn/zh-cn/articles/azure-operations-guide/app-service-web/a ...