题目背景

2-SAT 问题 模板

题目描述

有n个布尔变量 \(x_1\)​~\(x_n\)​,另有m个需要满足的条件,每个条件的形式都是“\(x_i\)​为true/false或\(x_j\)​为true/false”。比如“\(x_1\)​为真或\(x_3\)​为假”、“\(x_7\)​为假或\(x_2\)​为假”。2-SAT 问题的目标是给每个变量赋值使得所有条件得到满足。

输入输出格式

输入格式:

第一行两个整数n和m,意义如体面所述。

接下来m行每行4个整数 i a j b,表示“\(x_i\)​为a或\(x_j\)​为b”(a,b∈{0,1})

输出格式:

如无解,输出“IMPOSSIBLE”(不带引号); 否则输出"POSSIBLE"(不带引号),下 一行n个整数x_1x1​~x_nxn​(x_ixi​∈{0,1}),表示构造出的解。

输入输出样例

输入样例#1:

3 1
1 1 3 0

输出样例#1:

POSSIBLE
0 0 0

说明

1<=n,m<=1e6 , 前3个点卡小错误,后面5个点卡效率,由于数据随机生成,可能会含有( 10 0 10 0)之类的坑,但按照最常规写法的写的标程没有出错,各个数据点卡什么的提示在标程里。

题解

2-SAT裸题

2-SAT对于限制的处理非常的极简的,首先对每个点建两个点,表示两个状态,如果有某条限制为 “ \(A_0\) 和 \(B_1\) 必须存在一个 ” ,那么就从 \(A_1\) 向 \(B_1\) 连边,代表如果选了 \(A_1\) ,那么为了满足这个限制,就必须选 \(B_1\) ,而不能选 \(B_0\) ,然后还要将逆命题的边也连上

反正就是按照正常思路来推导,2-SAT就是把一堆推导的思路建成边吗,然后跑tarjan缩点,如果某个点的两个状态在同一个强连通分量里,那显然就无解了,因为这个点无论选什么状态都会产生矛盾

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=2000000+10;
int n,m,e,beg[MAXN],nex[MAXN],to[MAXN],DFN[MAXN],LOW[MAXN],Visit_Num,Stack[MAXN],In_Stack[MAXN],Stack_Num,Be[MAXN],cnt;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void Tarjan(int x)
{
DFN[x]=LOW[x]=++Visit_Num;
In_Stack[x]=1;
Stack[++Stack_Num]=x;
for(register int i=beg[x];i;i=nex[i])
if(!DFN[to[i]])Tarjan(to[i]),chkmin(LOW[x],LOW[to[i]]);
else if(In_Stack[to[i]]&&DFN[to[i]]<LOW[x])LOW[x]=DFN[to[i]];
if(DFN[x]==LOW[x])
{
int temp;++cnt;
do{
temp=Stack[Stack_Num--];
In_Stack[temp]=0;
Be[temp]=cnt;
}while(temp!=x);
}
}
int main()
{
read(n);read(m);
for(register int t=1;t<=m;++t)
{
int i,a,j,b;read(i);read(a);read(j);read(b);
insert(i<<1|a^1,j<<1|b);insert(j<<1|b^1,i<<1|a);
}
for(register int i=2;i<=(n<<1|1);++i)
if(!DFN[i])Tarjan(i);
for(register int i=2;i<=(n<<1|1);i+=2)
if(Be[i]==Be[i^1])
{
puts("IMPOSSIBLE");
return 0;
}
puts("POSSIBLE");
for(register int i=1;i<=n;++i)printf("%d ",Be[i<<1]<Be[i<<1|1]?0:1);
puts("");
return 0;
}

【刷题】洛谷 P4782 【模板】2-SAT 问题的更多相关文章

  1. [洛谷P4782] [模板] 2-SAT 问题

    NOIp后第一篇题解. NOIp我考的很凉啊...... 题目传送门 之前讲过怎么判断2-SAT是否存在解. 至于如何构造一组解: 我们想到对tarjan缩点后的图进行拓扑排序. 那么对于代表0状态的 ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  4. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  5. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  6. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  7. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  8. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  9. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  10. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

随机推荐

  1. python 字典,元组,对象,数组取值方法

    def create(self,cr,uid,vals,context=None): if context is None: context ={} if vals.get('name','/')== ...

  2. WPF编程,获取句柄将外部程序嵌入到WPF界面。

    原文:WPF编程,获取句柄将外部程序嵌入到WPF界面. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/details ...

  3. Verilog中的有符号计算之认知补码

    Verilog中的有符号计数,一般是自己定义的而不是像C语言之类的定义一个有符号变量就好了.所以,要想在FPGA的世界里随心所欲的进行有符号运算,必须先对补码有一个很好的认知,然后再注意Verilog ...

  4. C#用Infragistics 导入导出Excel(一)

    最近项目中有数据的导入导出Excel的需求,这里做简单整理. 公司用的是Infragistics的产品,付费,不需要本地安装Office. 有需要的朋友可以下载 Infragistics.2013.2 ...

  5. Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法

    一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...

  6. 在Microsoft Dynamic 365/2016环境使用LinqPad查询数据(不使用linqpad Microsoft Dynamic 365 Driver)

    在Microsoft Dynamic 365/2016环境使用LinqPad查询数据 老规矩,先上效果图: 实体集合: 实体属性: 属性值:  查询出的结果可以导出的格式: 操作步骤: 1.下载Lin ...

  7. 微信小程序初体验与DEMO分享

    前言 前一段时间微信公布小程序,瞬间引来了大量的关注.博主的公司也将其定为目标之一,遂派本菜为先头兵(踩坑侠). 这次开发了一个比较完整的DEMO,模仿自某个APP首页,由于保护隐私的目的我把数据拷贝 ...

  8. keycode值对照表

    转载自:https://segmentfault.com/a/1190000005828048 字母和数字键的键码值(keyCode) 按键 键码 按键 键码 按键 键码 按键 键码 A 65 J 7 ...

  9. (1) English Learning

    1.  no-brainer 不必花脑筋的事物 This tool is really no-brainer that almost everyone can use it. 这个工具太简单用了,不会 ...

  10. 5分钟让你明白HTTP协议

    一.HTTP简介 1.http协议介绍 HTTP协议(HyperText Transfer Protocol,超文本传输协议)是因特网上应用最为广泛的一种网络传输协议,所有的WWW文件都必须遵守这个标 ...