Given a non-empty string, encode the string such that its encoded length is the shortest.

The encoding rule is: k[encoded_string], where the encoded_string inside the square brackets is being repeated exactly k times.

Note:
k will be a positive integer and encoded string will not be empty or have extra space.
You may assume that the input string contains only lowercase English letters. The string's length is at most 160.
If an encoding process does not make the string shorter, then do not encode it. If there are several solutions, return any of them is fine.
Example 1: Input: "aaa"
Output: "aaa"
Explanation: There is no way to encode it such that it is shorter than the input string, so we do not encode it.
Example 2: Input: "aaaaa"
Output: "5[a]"
Explanation: "5[a]" is shorter than "aaaaa" by 1 character.
Example 3: Input: "aaaaaaaaaa"
Output: "10[a]"
Explanation: "a9[a]" or "9[a]a" are also valid solutions, both of them have the same length = 5, which is the same as "10[a]".
Example 4: Input: "aabcaabcd"
Output: "2[aabc]d"
Explanation: "aabc" occurs twice, so one answer can be "2[aabc]d".
Example 5: Input: "abbbabbbcabbbabbbc"
Output: "2[2[abbb]c]"
Explanation: "abbbabbbc" occurs twice, but "abbbabbbc" can also be encoded to "2[abbb]c", so one answer can be "2[2[abbb]c]".

DP:

Initially I think of 1D DP, dp[i] stands for the shortest string of first i characters, then:

dp[i] = minLen{dp[k] + encode(substring(k+1, i))}

then I realize that the second part encode(substring(k+1, i)) is actually the same with our dp problem. So it turns out the transfer function is

dp[i] = minLen{dp[k] + dp(substring(k+1, i))}

then 1D is not enough, I introduce the second dimension, which indicates the end. dp[i][j] is the shortest encoded string from i to j

But the hardest part of this problem is how to generate dp[i][j] from dp[i][k] and dp[k+1][j]

I've thought about the cases like:

dp[i][k] = 3[abc]   dp[k+1][j] = 2[abc],   then dp[i][j] = 5[abc]

dp[i][k] = 3[abc]   dp[k+1][j] = xyz,   then dp[i][j] = 3[abc]xyz

dp[i][k] = aabc   dp[k+1][j] = aabc,   then dp[i][j] = 2[aabc]

No idea what to implement this conveniently, so refer to idea  https://discuss.leetcode.com/topic/71963/accepted-solution-in-java

The idea is to firstly concantenate dp[i][k] and dp[k+1][j] directly to construct dp[i][j], and then check if there exist possible repeat patterns in the original substring s.substring(i, j+1) that could further shorten dp[i][j]

replaceAll function is really clever

Time Complexity is O(N^4), replaceAll() is O(N)

 public class Solution {
public String encode(String s) {
if (s==null || s.length()==0) return "";
String[][] dp = new String[s.length()][s.length()]; for (int len=0; len<s.length(); len++) {
for (int i=0; i+len<s.length(); i++) {
int j = i + len;
String subStr = s.substring(i, j+1);
dp[i][j] = subStr; //initialize
if (len < 4) continue;
for (int k=i; k<j; k++) {
if (dp[i][k].length() + dp[k+1][j].length() < dp[i][j].length()) {
dp[i][j] = dp[i][k] + dp[k+1][j];
}
} //check if subStr has repeat pattern
for (int k=i; k<j; k++) {
String repeat = s.substring(i, k+1);
if (subStr.length()%(k-i+1)==0 && subStr.replaceAll(repeat, "").length()==0) {
String ss = subStr.length()/repeat.length() + "[" + dp[i][k] + "]";
if (ss.length() < dp[i][j].length())
dp[i][j] = ss;
}
}
}
}
return dp[0][s.length()-1];
}
}

Leetcode: Encode String with Shortest Length && G面经的更多相关文章

  1. [LeetCode] Encode String with Shortest Length 最短长度编码字符串

    Given a non-empty string, encode the string such that its encoded length is the shortest. The encodi ...

  2. [LeetCode] Decode String 解码字符串

    Given an encoded string, return it's decoded string. The encoding rule is: k[encoded_string], where ...

  3. LeetCode : Given a string, find the length of the longest serial substring without repeating characters.

    Given a string, find the length of the longest serial substring without repeating characters. Exampl ...

  4. Leetcode: Encode and Decode TinyURL

    Note: This is a companion problem to the System Design problem: Design TinyURL. TinyURL is a URL sho ...

  5. Leetcode 943. Find the Shortest Superstring(DP)

    题目来源:https://leetcode.com/problems/find-the-shortest-superstring/description/ 标记难度:Hard 提交次数:3/4 代码效 ...

  6. [LeetCode] Encode and Decode TinyURL 编码和解码精简URL地址

    Note: This is a companion problem to the System Design problem: Design TinyURL. TinyURL is a URL sho ...

  7. Leetcode 8. String to Integer (atoi) atoi函数实现 (字符串)

    Leetcode 8. String to Integer (atoi) atoi函数实现 (字符串) 题目描述 实现atoi函数,将一个字符串转化为数字 测试样例 Input: "42&q ...

  8. 05_整理String类的Length()、charAt()、 getChars()、replace()、 toUpperCase()、 toLowerCase()、trim()、toCharArray()使用说明

    Question: 整理String类的Length().charAt(). getChars().replace(). toUpperCase(). toLowerCase().trim().toC ...

  9. 数组有没有length()这个方法? String有没有length()这个方法?

    答:数组和string都没有Length()方法,只有Length属性.

随机推荐

  1. 《DSP using MATLAB》示例Example5.9

    代码: n = 0:10; x = 10*(0.8) .^ n; y = x(mod_1(-n,11)+1); %% ----------------------------------------- ...

  2. Hdu5093 Battle ships 二分图

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission( ...

  3. Using MySQL Connector .NET 6.6.4 with Entity Framework 5

    I had been waiting for the latest MySQL connector for .NET to come out so I can move on to the new a ...

  4. 【iCore3应用开发平台】发布 iCore3 应用开发平台使用说明

    PDF下载地址:http://pan.baidu.com/s/1c2ca2lU

  5. 【RabbitMQ】Publish/Subscribe

    Publish/Subscribe 在上一节我们创建了一个work queue.背后的设想为每个任务被分发给明确的消费者.这节内容我们将做一些完全不同的事情 -- 我们将发送一条消息给多个消费者.这种 ...

  6. springboot+solr

    整合完DB层,cache层,开始整合solr. 注入SolrClient, package hello.configuration; import java.net.MalformedURLExcep ...

  7. Ubuntu jdk安装

    1. 创建目录 sudo mkdir /usr/lib/jvm 2. 解压 sudo tar -zxvf jdk-7u60-linux-x64.gz -C /usr/lib/jvm 3. 修改环境变量 ...

  8. canvas简单处理图片(反色处理)

    用canvas可以简单地处理图像,比如切割 灰色处理等,今天记下的是图像的反色处理. <!DOCTYPE html> <html> <head> <meta ...

  9. App Extension

    一.扩展概述 扩展(Extension)是iOS 8中引入的一个非常重要的新特性.扩展让app之间的数据交互成为可能.用户可以在app中使用其他应用提供的功能,而无需离开当前的应用. 在iOS 8系统 ...

  10. openfire 用户密码加密解密

    1.openfire采用的加密方法 Blowfish.java /** * $RCSfile$ * $Revision: 3657 $ * $Date: 2002-09-09 08:31:31 -07 ...