Lukas Neuman——【ICDAR2015】Efficient Scene Text Localization and Recognition with Local Character Refinement


  • 算法介绍

Fig. 2. Overview of the method. Initial text hypotheses efficiently generated
by a MSER detector are further refined using a local text model, unique to
each text line

一、 候选字符提取

1. MSER提取,二值化
2. 算出Distance Map
3. 求出所有SSP(以每个像素为中心的3*3窗口内,若中心点是最大值,则表示是SSP点)

4. 对每个连通分量,计算5维特征

5. 用4中学到的5维特征训练SVM分类器(三类,单字符,多字符,背景)

二、 文本线形成
1. 每三个字符拟合一条直线(三个,拟合误差小)
2. 所有直线进行聚类
3. 对每类的文本线投票选出最终的文本线

三、 字符调整
1. 算法目标:补全每个文本框里的字符

2. 算法初始值:Pf为MSER像素值,B为其他像素值,DF为空
3. 算法步骤:
(1) 边界扩展:计算PF的外接矩形,并进行边界扩展(水平取字符平均宽度,高度取高度的1/3)
(2) 更新DF:计算PF点中的SSP点,加入到DF中
(3) 训练GMM:使用DF点作为前景,B点作为背景,学习GMM的参数
(4) 构建图模型:加入源点(source)和汇点(sink),边权重如下:
    1) 第一类:源点与DF、PF相连,汇点与B相连。这些边的权重即为公式中的U,由算法步骤(3)中的GMM模型给出;
    2) 第二类:相邻像素点相连。边权重即为公式中的V,通过计算像素点在RGB空间的欧式距离得到;
(5) 求最小割模型:利用GrabCut算法求最小割,割分成的两个集合一个为PF,一个为B。
(6) 重新迭代(1)~(5),直到收敛(PF和B不再变化)
4. 算法输出:一个稳定的PF集合(属于字符的像素点)和B集合(属于背景的像素点)。

5. 算法的后处理:
(1) 计算PF的连通分量,得到候选图;
(2) 如果PF或B为空,则表示只有前景或背景点,说明是噪声块

6. 算法的示例图如下:

Fig. 1. The method pipeline. Source image (a). Initial MSER detection and classification (b) - character MSERs denoted green, multi-character MSERs blue and background MSERs denoted red. Text lines formation (c) - bottom line estimate in red. Local text refinement for the first text line - initialization (d), first iteration (e), second iteration (f), the last iteration (g), definitive foreground pixels in green, probable foreground pixels in blue, background pixels in red, ignored pixels in yellow. Final segmentation and text recognition (h)

  • 有意思的问题

  1. 为什么原始的As计算方法不好,要换成带w权的?权w为什么是那样的?(提示:奇数可以,偶数double)
  2. 为什么要分成三类?(提示:单字符和多字符的5种特征差异性太大)
  3. 为什么要进行character refinement?(提示:第一,为字符识别提供更准确的字符区域,第二,优化检测得到的结果)
  • 未解决的问题

  1. 用5维特征训练SVM,特征会不会太短,会不会过拟合?
  2. 文本线形成算法具体是怎么实现,细节怎样?
  3. GrabCut算法的实现?
  4. Distance Map的实现?

论文阅读(Lukas Neuman——【ICDAR2015】Efficient Scene Text Localization and Recognition with Local Character Refinement)的更多相关文章

  1. 论文阅读(Lukas Neumann——【ICCV2017】Deep TextSpotter_An End-to-End Trainable Scene Text Localization and Recognition Framework)

    Lukas Neumann——[ICCV2017]Deep TextSpotter_An End-to-End Trainable Scene Text Localization and Recogn ...

  2. 【论文速读】Chuhui Xue_ECCV2018_Accurate Scene Text Detection through Border Semantics Awareness and Bootstrapping

    Chuhui Xue_ECCV2018_Accurate Scene Text Detection through Border Semantics Awareness and Bootstrappi ...

  3. 【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition

    论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locne ...

  4. 论文阅读笔记四:CTPN: Detecting Text in Natural Image with Connectionist Text Proposal Network(ECCV2016)

    前面曾提到过CTPN,这里就学习一下,首先还是老套路,从论文学起吧.这里给出英文原文论文网址供大家阅读:https://arxiv.org/abs/1609.03605. CTPN,以前一直认为缩写一 ...

  5. 【论文速读】Fangfang Wang_CVPR2018_Geometry-Aware Scene Text Detection With Instance Transformation Network

    Han Hu--[ICCV2017]WordSup_Exploiting Word Annotations for Character based Text Detection 作者和代码 caffe ...

  6. #论文阅读# Universial language model fine-tuing for text classification

    论文链接:https://aclweb.org/anthology/P18-1031 对文章内容的总结 文章研究了一些在general corous上pretrain LM,然后把得到的model t ...

  7. 论文阅读 | HotFlip: White-Box Adversarial Examples for Text Classification

    [code] [pdf] 白盒 beam search 基于梯度 字符级

  8. 论文阅读笔记“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”

    关于论文的阅读笔记 论文的题目是“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”,翻译成中文为 ...

  9. [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)

    原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...

随机推荐

  1. 常用的Meta标签写法和作用

    页面关键词 <meta name="keywords" content="your tags" /> 页面描述 <meta name=&quo ...

  2. CSS中伪类及伪元素用法详解

    CSS中伪类及伪元素用法详解   伪类的分类及作用: 注:该表引自W3School教程 伪元素的分类及作用: 接下来让博主通过一些生动的实例(之前的作业或小作品)来说明几种常用伪类的用法和效果,其他的 ...

  3. 理解margin

    margin可以改变容器的尺寸 //元素尺寸分为可视尺寸,占据尺寸 margin与可视尺寸 1.适用于没有设定width/height的普通block水平元素 2.只适用于水平方向的尺寸 应用:一侧定 ...

  4. Learn ZYNQ (9)

    创建zybo cluster的spark集群(计算层面): 1.每个节点都是同样的filesystem,mac地址冲突,故: vi ./etc/profile export PATH=/usr/loc ...

  5. Java图片转换为base64格式

    /** * @Descriptionmap 将图片文件转化为字节数组字符串,并对其进行Base64编码处理 * @author temdy * @Date 2015-01-26 * @param pa ...

  6. C# 控制datagridview的combox属性的列绑定数据

    //datagridvie列绑定list的数据 List<User> listChange = GetChange();//查询数据库内容,保存到list this.datagridvie ...

  7. C#.Net下的防抖-Debounce和节流阀-Throttle功能实现

    C#下的防抖-Debounce.节流阀-Throttle功能实现 防抖-Debounce 连续的多次调用,只有在调用停止之后的一段时间内不再调用,然后才执行一次处理过程. 节流阀-Throttle 连 ...

  8. js获取cookie 和 模仿php的&_GET方法

    //获取get参数 function _get(name){ var reg = new RegExp("(^|&)"+ name +"=([^&]*)( ...

  9. wordpress多站点环境设置上传附件大小

    多站点环境更改上传附件大小: php.ini post_max_size = 8M upload_max_filesize = 10M 另外,后台域名管理中设置/网络设置/可以设置上传文件大小. 代码 ...

  10. h5移动端常见问题

    meta基础知识 H5页面窗口自动调整到设备宽度,并禁止用户缩放页面 1 <meta name="viewport" content="width=device-w ...