带修改区间K大值

这题有很多做法,我的做法是树状数组套权值线段树,修改查询的时候都是按着树状数组的规则找出那log(n)个线段树根,然后一起往下做

时空都是$O(nlog^2n)$的(如果离散化了的话),空间可能会被卡,但实际上点数不用开到特别大,N*200也能过

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=5e4+,maxp=maxn*,inf=1e8; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int root[maxn],ch[maxp][],v[maxp],pct;
int num[maxn],tmp1[maxn],tmp2[maxn],N,M; inline int lowbit(int x){return x&(-x);} inline void update(int p){v[p]=v[ch[p][]]+v[ch[p][]];}
inline void add(int &p,int l,int r,int x,int y){
if(!p) p=++pct;
if(l==r) v[p]+=y;
else{
int m=l+r>>;
if(x<=m) add(ch[p][],l,m,x,y);
else add(ch[p][],m+,r,x,y);
update(p);
}
}
inline void change(int x,int y){
int ori=num[x];
for(;x<=N;x+=lowbit(x)){
if(ori!=-) add(root[x],,inf,ori,-);
add(root[x],,inf,y,);
}
} inline void reset(int x,int y){
for(;y;y-=lowbit(y)) tmp1[y]=root[y];
for(;x;x-=lowbit(x)) tmp2[x]=root[x];
}
inline bool pushdown(int x,int y,bool b){
bool re=;
for(;y;y-=lowbit(y)) tmp1[y]=ch[tmp1[y]][b],re|=tmp1[y];
for(;x;x-=lowbit(x)) tmp2[x]=ch[tmp2[x]][b],re|=tmp2[x];
return re;
} int query1(int l,int r,int x,int y,int k){
if(k<) return ;
if(l==r) return ;
int m=l+r>>;
if(k<=m){
if(!pushdown(x,y,)) return ;
return query1(l,m,x,y,k);
}else{
int w=;
for(int i=y;i;i-=lowbit(i)) w+=v[ch[tmp1[i]][]];
for(int i=x;i;i-=lowbit(i)) w-=v[ch[tmp2[i]][]];
if(!pushdown(x,y,)) return w+;
return w+query1(m+,r,x,y,k);
}
}
int query2(int l,int r,int x,int y,int k){
if(k<=) return -;
int w=;
for(int i=y;i;i-=lowbit(i)) w+=v[tmp1[i]];
for(int i=x;i;i-=lowbit(i)) w-=v[tmp2[i]];
if(w<k) return -;
if(l==r) return l;
int m=l+r>>;w=;
for(int i=y;i;i-=lowbit(i)) w+=v[ch[tmp1[i]][]];
for(int i=x;i;i-=lowbit(i)) w-=v[ch[tmp2[i]][]];
if(k<=w){
pushdown(x,y,);
return query2(l,m,x,y,k);
}else{
pushdown(x,y,);
return query2(m+,r,x,y,k-w);
}
} int main(){
//freopen(".in","r",stdin);
int i,j,k;
N=rd(),M=rd();
CLR(num,-);
for(i=;i<=N;i++){
int x=rd();
change(i,x);num[i]=x;
}
for(i=;i<=M;i++){
int a=rd(),b=rd(),c=rd();
if(a==){
change(b,c);num[b]=c;
}else{
int d=rd();
if(a==){
reset(b-,c);
printf("%d\n",query1(,inf,b-,c,d));
}else if(a==){
reset(b-,c);
printf("%d\n",query2(,inf,b-,c,d));
}else if(a==){
reset(b-,c);
int rk=query1(,inf,b-,c,d);
reset(b-,c);
if(rk==) printf("-2147483647\n");
else printf("%d\n",query2(,inf,b-,c,rk-));
}else if(a==){
reset(b-,c);
int rk=query1(,inf,b-,c,d+);
reset(b-,c);
int re=query2(,inf,b-,c,rk);
if(re==-) printf("2147483647\n");
else printf("%d\n",re);
}
}
}
return ;
}

luogu3380/bzoj3196 二逼平衡树 (树状数组套权值线段树)的更多相关文章

  1. CF1093E Intersection of Permutations 树状数组套权值线段树

    \(\color{#0066ff}{ 题目描述 }\) 给定整数 \(n\) 和两个 \(1,\dots,n\) 的排列 \(a,b\). \(m\) 个操作,操作有两种: \(1\ l_a\ r_a ...

  2. BZOJ2141排队——树状数组套权值线段树(带修改的主席树)

    题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家 乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别 ...

  3. Dynamic Rankings(树状数组套权值线段树)

    Dynamic Rankings(树状数组套权值线段树) 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[ ...

  4. [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)

    [BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...

  5. 【树状数组套权值线段树】bzoj1901 Zju2112 Dynamic Rankings

    谁再管这玩意叫树状数组套主席树我跟谁急 明明就是树状数组的每个结点维护一棵动态开结点的权值线段树而已 好吧,其实只有一个指针,指向该结点的权值线段树的当前结点 每次查询之前,要让指针指向根结点 不同结 ...

  6. 刷题总结——骑士的旅行(bzoj4336 树链剖分套权值线段树)

    题目: Description 在一片古老的土地上,有一个繁荣的文明. 这片大地几乎被森林覆盖,有N座城坐落其中.巧合的是,这N座城由恰好N-1条双 向道路连接起来,使得任意两座城都是连通的.也就是说 ...

  7. 【bzoj3065】带插入区间K小值 替罪羊树套权值线段树

    题目描述 从前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i].跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴.这时跳蚤国王决定理性愉悦一下,查询区间k小值.他每次向它的随从伏特提出 ...

  8. LightOJ 1085(树状数组+离散化+DP,线段树)

    All Possible Increasing Subsequences Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format: ...

  9. HDU 1934 树状数组 也可以用线段树

    http://acm.hdu.edu.cn/showproblem.php?pid=1394 或者是我自己挂的专题http://acm.hust.edu.cn/vjudge/contest/view. ...

随机推荐

  1. 浅谈左偏树在OI中的应用

    Preface 可并堆,一个听起来很NB的数据结构,实际上比一般的堆就多了一个合并的操作. 考虑一般的堆合并时,当我们合并时只能暴力把一个堆里的元素一个一个插入另一个堆里,这样复杂度将达到\(\log ...

  2. 【强化学习】python 实现 q-learning 例三(例一改写)

    本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10139738.html 例一的代码是函数式编写的,这里用面向对象的方式重新撸了一遍.好处是, ...

  3. [2019校招] - Java多线程面试题总结

    Object 的 wait()和notify() 方法 下图为线程状态的图: Object 对象中的 wait()和notify()是用来实现实现等待 / 通知模式.其中等待状态和阻塞状态是不同的.等 ...

  4. slurm用户快速入门手册

    1. 概述2. 架构3. 命令3.1 sacct3.2 sattach3.4 sbatch3.5 sbcast3.6 scancel3.7 scontrol3.8 sinfo3.9 smap3.10 ...

  5. Html5计算MD5值

    教程: http://www.tuicool.com/articles/InEBNz 组件: https://github.com/satazor/js-spark-md5

  6. Nginx反向代理的简单实现

    1)nginx的反向代理:proxy_pass2)nginx的负载均衡:upstream 下面是nginx的反向代理和负载均衡的实例: 负载机:A机器:103.110.186.8/192.168.1. ...

  7. Docker容器学习梳理 - 日常操作总结

    使用Docker已有一段时间了,今天正好有空梳理下自己平时操作Docker时的一些命令和注意细节: Docker 命令帮助 $ sudo docker Commands: attach Attach ...

  8. ACM注意事项

           acm竞赛中不能使用一些屏幕控制和键盘读取的函数,如:getch(),geche(),gotoxy(),clrscr(),另外fflush(stdio)这个函数也不能使用,因为在有的编译 ...

  9. Linux内核分析第四章 读书笔记

    Linux内核分析第四章 读书笔记 第一部分--进程调度 进程调度:操作系统规定下的进程选取模式 面临问题:多任务选择问题 多任务操作系统就是能同时并发地交互执行多个进程的操作系统,在单处理器机器上这 ...

  10. C#获取当月第一天和最后一天

    当月第一天0时0分0秒: DateTime.Now.AddDays(1 - DateTime.Now.Day).Date 当月最后一天23时59分59秒: DateTime.Now.AddDays(1 ...