C语言 · 勾股数
勾股数
勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。
已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。
求满足这个条件的不同直角三角形的个数。
【数据格式】 输入一个整数 n (0<n<10000000) 表示直角三角形斜边的长度。 要求输出一个整数,表示满足条件的直角三角形个数。
例如,输入: 5 程序应该输出: 1
再例如,输入: 100 程序应该输出: 2
再例如,输入: 3 程序应该输出: 0
资源约定: 峰值内存消耗 < 256M CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0 注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。 注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
#include<stdio.h>
int main(){
int a,b,c;
int ans=;
scanf("%d",&c);
for(a=;a<=;a++){
for(b=;b<=;b++){
if(a+b<=c) continue;//如果两边之和小于第三边,跳出
if(b<=a) continue;
if(a*a+b*b==c*c){
ans++;
printf("%d %d %d\n",a,b,c);
}
}
}
printf("%d",ans);
}
C语言 · 勾股数的更多相关文章
- 勾股数专题-SCAU-1079 三角形-18203 神奇的勾股数(原创)
勾股数专题-SCAU-1079 三角形-18203 神奇的勾股数(原创) 大部分的勾股数的题目很多人都是用for来便利,然后判断是不是平方数什么什么的,这样做的时候要对变量类型和很多细节都是要掌握好的 ...
- MT【315】勾股数
(高考压轴题)证明以下命题:(1)对任意正整数$a$都存在正整数$b,c(b<c)$,使得$a^2,b^2,c^2$成等差数列.(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a ...
- hdu 6441 (费马大定理+勾股数 数学)
题意是给定 n 和 a,问是否存在正整数 b,c 满足:a^n + b^n == c^n.输出 b c,若不存在满足条件的 b,c,输出 -1 -1. 当 n > 2 时,由费马大定理,不存在 ...
- 猜想:一组勾股数a^2+b^2=c^2中,a,b之一必为4的倍数。
证明: 勾股数可以写成如下形式 a=m2-n2 b=2mn c=m2+n2 而m,n按奇偶分又以下四种情况 m n 奇 偶 ① 偶 奇 ② 偶 偶 ③ 奇 奇 ④ 上面①②③三种情况中,mn中存在至少 ...
- 不用一个判断,用JS直接输出勾股数
说明: 这里勾股数是符合a2+b2=c2的整数,比如32+42=52,52+122=132,怎么把符合条件的勾股数找出来呢?用代数替代的方法可以极大简化程序,直至一个判断都不用. 可以设a=m2-n2 ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 4 - Find Integer 【费马大定理+构造勾股数】
Find Integer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
- 勾股数--Python
勾股数:勾股数又名毕氏三元数 .勾股数就是可以构成一个直角三角形三边的一组正整数.勾股定理:直角三角形两条直角边a.b的平方和等于斜边c的平方(a²+b²=c²) 要求:输出1000以内的勾股数 fr ...
- hdu6441 Find Integer 求勾股数 费马大定理
题目传送门 题目大意: 给出a和n,求满足的b和c. 思路: 数论题目,没什么好说的. 根据费马大定理,当n>2时不存在正整数解. 当n=0或者1时特判一下就可以了,也就是此时变成了一个求勾股数 ...
- hdu 6441 Find Integer(费马大定理+勾股数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6441(本题来源于2018年中国大学生程序设计竞赛网络选拔赛) 题意:输入n和a,求满足等式a^n+b^ ...
随机推荐
- loading加载动画效果js实现
<style>.box { width: 400px; padding: 20px; border: 40px solid #a0b3d6; background-color: #eee; ...
- BZOJ.2679.Balanced Cow Subsets(meet in the middle)
BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...
- 洛谷 P1078 文化之旅(CODEVS 1316)
题目描述 有一位使者要游历各国,他每到一个国家,都能学到一种文化,但他不愿意学习任何一 种文化超过一次(即如果他学习了某种文化,则他就不能到达其他有这种文化的国家).不 同的国家可能有相同的文化.不同 ...
- 关于腾讯云服务器不能用公网ip访问的解决方案
最近在腾讯云服务器上部署Javaweb项目,开始外网ip是可以访问到云服务器上的项目的,我重启了一下Tomcat之后发现端口号8080无法使用,此时的公网ip还是可以使用的,然后我重启了一下云服务器之 ...
- mongodb更新数组元素中的字段,数组$占位符
pppCodes为数组,PPPCode,expiredOn为数组元素中的字段 db.getCollection('users').findOneAndUpdate({ _id: userId, 'pp ...
- show full processlist
mysql 显示哪些线程正在运行: show full processlist; 如果mysql 发生了锁表的情况,这个命令很容易知道是哪个表被什么操作锁住了
- 我要当皇帝等微信小游戏的wbs
猜字:1.视图交互: 1)主界面:展示每一道题目跟答案 1) 题目展示区域, 成员布局 2) 选项展示 3) 其他 2)下一道题弹框 3)答案弹框 4)结果弹框 5)关卡弹框 2.数据处理, 1) 读 ...
- PAT Basic 1005
1005 继续(3n+1)猜想 (25 分) 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程 ...
- 20、collections模块和re模块(正则表达式详解)
从今天开始我们就要开始学习python的模块,今天先介绍两个常用模块collections和re模块.还有非常重要的正则表达式,今天学习的正则表达式需要记忆的东西非常多,希望大家可以认真记忆.按常理来 ...
- Using async-await on .net 4
I'm currently starting to create an application that would profit a lot from C# 5's async-await feat ...