「SDOI2016」储能表(数位dp)

神仙数位 \(dp\) 系列 可能我做题做得少 \(QAQ\)

\(f[i][0/1][0/1][0/1]\) 表示第 \(i\) 位 \(n\) 是否到达上界 \(m\) 是否到达上界 \(k\) 是否到达下界。我用一个 \(pair\) 存,\(first\) 记录方案数,\(second\) 记录所有的和。

\(ans=(P.S-k*P.F)\%mod\)

那么我们每次枚举该位为 \(0/1\) 就可以转移了,逐位计算贡献。

\(Code\ Below:\)

#include <bits/stdc++.h>
#define ll long long
#define pll pair<ll,ll>
#define mp make_pair
#define F first
#define S second
using namespace std;
ll n,m,k,mod;pll f[70][2][2][2];
bool vis[70][2][2][2]; pll dfs(int len,bool N,bool M,bool K){
if(len<0) return mp(1,0);
if(vis[len][N][M][K]) return f[len][N][M][K];
vis[len][N][M][K]=1;
pll ret=mp(0,0),P;
bool lim_n=N?(n>>len)&1:1,lim_m=M?(m>>len)&1:1,lim_k=K?(k>>len)&1:1;
for(int i=0;i<=lim_n;i++)
for(int j=0;j<=lim_m;j++){
if(K&&(i^j)<lim_k) continue;
P=dfs(len-1,N&&i==lim_n,M&&j==lim_m,K&&(i^j)==lim_k);
ret.F=(ret.F+P.F)%mod;
ret.S=(ret.S+P.S+(i^j)*(1ll<<len)%mod*P.F)%mod;
}
return f[len][N][M][K]=ret;
} inline void solve(){
memset(f,0,sizeof(f));
memset(vis,0,sizeof(vis));
scanf("%lld%lld%lld%lld",&n,&m,&k,&mod);
n--;m--;
ll N=n,M=m,K=k;int Max=0,now=0;
while(N) N>>=1,now++;Max=max(Max,now);now=0;
while(M) M>>=1,now++;Max=max(Max,now);now=0;
while(K) K>>=1,now++;Max=max(Max,now);now=0;
pll P=dfs(Max-1,1,1,1);
printf("%lld\n",(P.S-k%mod*P.F%mod+mod)%mod);
} int main()
{
int T;
scanf("%d",&T);
while(T--) solve();
return 0;
}

「SDOI2016」储能表(数位dp)的更多相关文章

  1. loj2030 「SDOI2016」储能表

    ref ref 一个点就是一个数对 \((x,y)\). 记状态 \(f[i][1/0][1/0][1/0]\) 和 \(g[i][1/0][1/0][1/0]\),其中三个 \(1/0\) 取值分别 ...

  2. BZOJ 4513: [Sdoi2016]储能表 [数位DP !]

    4513: [Sdoi2016]储能表 题意:求\[ \sum_{i=0}^{n-1}\sum_{j=0}^{m-1} max((i\oplus j)-k,0) \] 写出来好开心啊...虽然思路不完 ...

  3. 【BZOJ4513】[Sdoi2016]储能表 数位DP

    [BZOJ4513][Sdoi2016]储能表 Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 ...

  4. BZOJ.4513.[SDOI2016]储能表(数位DP)

    BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0} ...

  5. [SDOI2016]储能表——数位DP

    挺隐蔽的数位DP.少见 其实减到0不减了挺难处理.....然后就懵了. 其实换个思路: xor小于k的哪些都没了, 只要留下(i^j)大于等于k的那些数的和以及个数, 和-个数*k就是答案 数位DP即 ...

  6. 4513: [Sdoi2016]储能表 数位DP

    国际惯例的题面: 听说这题的正解是找什么规律,数位DP是暴力......好的,我就写暴力了QAQ.我们令f[i][la][lb][lc]表示二进制从高到低考虑位数为i(最低位为1),是否顶n上界,是否 ...

  7. BZOJ4513: [Sdoi2016]储能表(数位dp)

    题意 题目链接 Sol 一点思路都没有,只会暴力,没想到标算是数位dp??Orz 首先答案可以分成两部分来统计 设 \[ f_{i,j}= \begin{aligned} i\oplus j & ...

  8. [bzoj4513][SDOI2016]储能表——数位dp

    题目大意 求 \[\sum_{i = 0}^{n-1}\sum_{j=0}^{m-1} max((i\ xor\ j)\ -\ k,\ 0)\ mod\ p\] 题解 首先,开始并没有看出来这是数位d ...

  9. LG2602/BZOJ1833 「ZJOI2010」数字计数 数位DP

    问题描述 LG2602 BZOJ1833 题解 数位\(\mathrm{DP}\)板子题. 注意限制位数.前导零. \([a,b]=[1,b]-[1,a-1]\) \(\mathrm{Code}\) ...

随机推荐

  1. 01 Python 逻辑运算

    #基本运算符 #and or not #优先级 ()>not>and>or #and or not print(2>1 and 1<4 or 2<3 and 9&g ...

  2. ZStack串口通信

    要使用ZStack就不得不先了解ZStack的OSAL工作原理 http://blog.csdn.net/qinpeng_zbdx/article/details/20990797 http://we ...

  3. vue 全局组件【原】

    1.目录 2.内容 -Loading.vue <template> <div class="loading"> loading... </div> ...

  4. servlet 最大线程数探索笔记

    servlet默认是单例模式的,所以是单例多线程的.如果实现了singleservlet是可以多个servlet实例,下面是一个servlet的请求生命周期 1 客户端请求该 Servlet:加载 S ...

  5. java处理url中的特殊字符%等

    java处理url中的特殊字符(如&,%...) URL(Uniform Resoure Locator,统一资源定位器)是Internet中对资源进行统一定位和管理的标志.一个完整的URL包 ...

  6. 你不知道的JavaScript中,读书笔记

    七种内置类型 null, undefined, boolean, number, string, object, symbol typeof null === 'object' // true nul ...

  7. tomcat7闪退

    问题是我昨天运行的好好的,今天加了些代码,tomcat7就会启动闪退.我把conf/server.xml中的<Context />去掉,tomcat又能正常启动! 那么问题出在哪里呢? 我 ...

  8. 利用springloaded进行java jar&class的动态替换

    之前已经写过一篇关于class的动态替换博客,今天我们来介绍一下如何用springloaded进行jar&class的动态替换. 首先说一下实验过程,结合了目前我正在做的项目,这个项目是一个前 ...

  9. yii框架 隐藏index.php 以及美化URL(pathinfo模式访问)

    首先我们分步骤来: 安装好 yii 以后  我们看到的url地址如下所示: http://www.3w.com/MyApp/backend/web/index.php?r=site%2Flogin 我 ...

  10. Eclipse 中打开 python 交互窗口