HDU - 3949 :XOR(线性基,所有集合的不同异或和中,求从小到大第K个)
InputFirst line of the input is a single integer T(T<=30), indicates there are T test cases.
For each test case, the first line is an integer N(1<=N<=10000), the number of numbers below. The second line contains N integers (each number is between 1 and 10^18). The third line is a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q numbers(each number is between 1 and 10^18) K1,K2,......KQ.OutputFor each test case,first output Case #C: in a single line,C means the number of the test case which is from 1 to T. Then for each query, you should output a single line contains the Ki-th smallest number in them, if there are less than Ki different numbers, output -1.Sample Input
2
2
1 2
4
1 2 3 4
3
1 2 3
5
1 2 3 4 5
Sample Output
Case #1:
1
2
3
-1
Case #2:
0
1
2
3
-1
题意:给定N个数,所有集合的不同异或和中,求从小到大第K个,不存在则输出-1。
思路:我们知道线性基可以表示用不超过64个数,表示出所有集合的异或和,那么为0的部位不考虑,我们求第K个,就是等效表示成二进制。。。ok了。
先求线性基,得到p数组。然后把为0的忽略,并且前面的p对后面的效果求出来。 有个注意的问题就是0,因为线性基我们没有考虑0,所以0单独考虑,如果线性基的大小和原数组大小一样,则可以表示出来,那么K--;
#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep2(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int maxn=;
ll p[],x;
int main()
{
int T,N,Q,Cas=;
scanf("%d",&T);
while(T--){
scanf("%d",&N);
rep(i,,) p[i]=;
rep(i,,N) {
scanf("%lld",&x);
rep2(j,,){
if(x&(1LL<<j)){
if(p[j]) x^=p[j];
else { p[j]=x;break;}
}
}
}
ll num=,ans,K;
rep(i,,) if(p[i]){
p[num++]=p[i];
rep(j,i+,) if((p[j]>>i)&) p[j]^=p[i];
}
scanf("%d",&Q);
printf("Case #%d:\n",++Cas);
while(Q--){
scanf("%lld",&K); if(N!=num) K--; //here,notice!考虑0的存在性
if(K>=(1LL<<num)) puts("-1");
else {
ans=;
rep(j,,) {
if(K&(1LL<<j)) ans^=p[j]; //不能加,还是用异或,可能有尾巴,相互抵消
}
printf("%I64d\n",ans);
}
}
}
return ;
}
HDU - 3949 :XOR(线性基,所有集合的不同异或和中,求从小到大第K个)的更多相关文章
- HDU 3949 XOR [线性基|高斯消元]
目录 题目链接 题解 代码 题目链接 HDU 3949 XOR 题解 hdu3949XOR 搞死消元找到一组线性无关组 消出对角矩阵后 对于k二进制拆分 对于每列只有有一个1的,显然可以用k的二进制数 ...
- hdu 3949 XOR (线性基)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意: 给出n个数,从中任意取几个数字异或,求第k小的异或和 思路: 线性基求第k小异或和,因为题 ...
- HDU 3949 XOR 线性基
http://acm.hdu.edu.cn/showproblem.php?pid=3949 求异或第k小,结论是第k小就是 k二进制的第i位为1就把i位的线性基异或上去. 但是这道题和上一道线性基不 ...
- hdu 3949 XOR 线性基 第k小异或和
题目链接 题意 给定\(n\)个数,对其每一个子集计算异或和,求第\(k\)小的异或和. 思路 先求得线性基. 同上题,转化为求其线性基的子集的第k小异或和. 结论 记\(n\)个数的线性基为向量组\ ...
- HDU 3949 XOR ——线形基 高斯消元
[题目分析] 异或空间的K小值. 高斯消元和动态维护线形基两种方法都试了试. 动态维护更好些,也更快(QAQ,我要高斯消元有何用) 高斯消元可以用来开拓视野. 注意0和-1的情况 [代码] 高斯消元 ...
- HDU 3949 XOR(高斯消元搞基)
HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第 ...
- HDU 3949 XOR [高斯消元XOR 线性基]
3949冰上走 题意: 给你 N个数,从中取出若干个进行异或运算 , 求最后所有可以得到的异或结果中的第k小值 N个数高斯消元求出线性基后,设秩为$r$,那么总共可以组成$2^r$中数字(本题不能不选 ...
- HDU 3949 XOR (线性基第k小)题解
题意: 给出\(n\)个数,求出子集异或第\(k\)小的值,不存在输出-1. 思路: 先用线性基存所有的子集,然后对线性基每一位进行消元,保证只有\(d[i]\)的\(i\)位存在1,那么这样变成了一 ...
- ACM学习历程—HDU 3949 XOR(xor高斯消元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的 ...
随机推荐
- mybatis入门学习记录(一)
过硬的技术本领,可以给我们保驾护航,飞得更高.今天开始呢.我们就一起来探讨使用mybatis的好处. 首先我们一起来先看看原生的JDBC对于数据库的操作,然后总结其中的利弊,为学习mybatis奠定基 ...
- Zabbix linux agent 安装
系统:Linux Centos 7.3 x64 服务:Zabbix_agent 3.0.16 一.安装Zabbix_agent 服务 1.安装zabbix 3.0 yum源 rpm -ivh http ...
- JavaWeb Listener
1. 监听器概述 1.1. 什么是监听器 做过Swing或者AWT图像界面Java程序开发的话,应该对Listener与Event非常熟悉.Swing或者AWT中通过Listener与Event来处理 ...
- ngnix进阶
ngnix进阶 nginx: [warn] duplicate MIME type "text/html" in /usr/local/nginx/conf/nginx.conf: ...
- springboot创建多环境profile打包
springboot开发打包时,一般会有多个环境,dev,qa,prod等,配置文件大多雷同,只是方便开发切换,但是生成部署时产生的war包就无需这么多重复配置了,这时这些dev,qa的配置就不应该打 ...
- spring和hibernate整合时报sessionFactory无法获取默认Bean Validation factory
Hibernate 3.6以上版本在用junit测试时会提示错误: Unable to get the default Bean Validation factory spring和hibernate ...
- Contest-hunter 暑假送温暖 SRM08
01-07都没写...然后突然来写貌似有点突兀啊...不管了,难得前排记录一下... 吐槽一下赛制...不得不说很强... cf 套oi...很创新...不过还是兹磁ACM或者CF A-1 数据才2& ...
- JS复制内容到剪贴板: 兼容IE、Firefox、Chrome、Safari所有浏览器【转】
正 文: 现在浏览器种类也越来越多,诸如 IE.Firefox.Chrome.Safari等等,因此现在要实现一个js复制内容到剪贴板的小功能就不是一件那么容易的事了. 在FLASH 9 时代,有一个 ...
- hadoop 2.7.3 源码编译教程
1.工具准备,最靠谱的是hadoop说明文档里要求具备的那些工具. 到hadoop官网,点击source下载hadoop-2.7.3-src.tar.gz. 解压之 tar -zxvf hadoop- ...
- Django之ModelForm详解
前言 这是一个神奇的组件,通过名字我们可以看出来,这个组件的功能就是把model和form组合起来.先来一个简单的例子来看一下这个东西怎么用: 比如我们的数据库中有这样一张学生表,字段有姓名,年龄,爱 ...