Description

  物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

Input

  第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

Output

  包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8

1 2 1

1 3 3

1 4 2

2 3 2

2 4 4

3 4 1

3 5 2

4 5 2

4

2 2 3

3 1 1

3 3 3

4 4 5

Sample Output

32

//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)3+(3+2)2+10=32

Solution

这东西开始一直卡在怎么设计状态上,后来发现强行暴力好像就可以了?

考虑dp,设 \(f[i]\) 表示到第 \(i\) 天的最小代价是多少

\(f[i]=min\{f[j-1]+cost[j][i]+(j>1?K:0)\}~~~~~(0 \leq j\leq i \leq n)\)

意义就是,我们让第 \(j\) 天到第 \(i\) 天强行是一条路径,再从前面转移

\(cost\) 矩阵预处理就好了

是不是很水

我写的程序里把 \(n\) 和 \(m\) 换了一下,感觉 \(n\) 表示点数更顺手,注意一下就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=20+5,MAXM=100+10,inf=0x3f3f3f3f;
int n,m,K,t,d,e,to[MAXN*MAXN*2],nex[MAXN*MAXN*2],w[MAXN*MAXN*2],beg[MAXN],p[MAXN],dis[MAXN],use[MAXN],avail[MAXN][MAXM],cost[MAXM][MAXM];
ll f[MAXM];
std::queue<int> q;
struct edge{
int u,v,k;
};
edge side[MAXN*MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
w[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
w[e]=z;
}
inline int SPFA(int l,int r)
{
for(register int i=1;i<=n;++i)
{
use[i]=1;
for(register int j=l;j<=r;++j)
if(!avail[i][j])use[i]=0;
}
e=0;
memset(beg,0,sizeof(beg));
for(register int i=1;i<=t;++i)
if(use[side[i].u]&&use[side[i].v])insert(side[i].u,side[i].v,side[i].k);
memset(dis,inf,sizeof(dis));
dis[1]=0;
p[1]=1;
q.push(1);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(dis[to[i]]>dis[x]+w[i])
{
dis[to[i]]=dis[x]+w[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return dis[n];
}
int main()
{
read(m);read(n);read(K);read(t);
for(register int i=1;i<=t;++i)read(side[i].u),read(side[i].v),read(side[i].k);
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)avail[i][j]=1;
read(d);
for(register int i=1;i<=d;++i)
{
int x,l,r;read(x);read(l);read(r);
for(register int j=l;j<=r;++j)avail[x][j]=0;
}
for(register int r=1;r<=m;++r)
for(register int l=1;l<=r;++l)cost[l][r]=SPFA(l,r);
memset(f,inf,sizeof(f));
f[0]=0;
for(register int i=1;i<=m;++i)
for(register int j=1;j<=i;++j)chkmin(f[i],(ll)(f[j-1]+1ll*cost[j][i]*(i-j+1)+(j!=1?K:0)));
write(f[m],'\n');
return 0;
}

【刷题】BZOJ 1003 [ZJOI2006]物流运输的更多相关文章

  1. BZOJ 1003 [ZJOI2006]物流运输trans

    1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4242  Solved: 1765[Submit] ...

  2. BZOJ 1003: [ZJOI2006]物流运输trans(最短路+dp)

    1A,爽! cost[i][j]表示从第i天到第j天不改路线所需的最小花费,这个可以用最短路预处理出.然后dp(i)=cost[j][i]+dp(j-1)+c. c为该路线的花费. --------- ...

  3. BZOJ 1003[ZJOI2006]物流运输(SPFA+DP)

    Problem 1003. -- [ZJOI2006]物流运输 1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: ...

  4. bzoj 1003 [ZJOI2006]物流运输(最短路+dp)

    [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 8973  Solved: 3839[Submit][Status][Di ...

  5. BZOJ 1003: [ZJOI2006]物流运输trans DP+最短路

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  6. BZOJ 1003 [ZJOI2006]物流运输trans ★(Dijkstra + DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1003 思路 先Dijkstra暴力求出i..j天内不变换路线的最少花费,然后dp[i] = ...

  7. [bzoj]1003: [ZJOI2006]物流运输

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  8. BZOJ 1003: [ZJOI2006]物流运输(spfa+dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1003 题意: 思路: 首先用spfa计算一下任意两天之内的最短路,dis[a][b]表示的就是在第a ...

  9. BZOJ 1003 [ZJOI2006]物流运输trans SPFA+DP

    题意:链接 方法:SPFA+DP 解析:挺好的题目.因为数据范围较小所以用这样的方式能够搞,只是也是挺不好想的. 我们定义cost(i,j)表示从第i天走到第j天运用同一种方式的最小花费,然后因为数据 ...

随机推荐

  1. 二进制描述子 BRIEF(ORB), BRISK, FREAK

    二进制描述子设计原则体现在三个部分: 采样pattern 方向orientation compensation 配对sampling pairs ORB基于BRIEF: BRISK是用于OKVIS的描 ...

  2. 抽样分布(2) t分布

    定义 t分布 设X ~ N(0,1),Y ~ χ2(n),且X,Y相互独立,则称随机变量 服从自由度为n的t分布(学生氏分布) 记为 t~t(n),其概率密度为 由于tn(x)是偶函数,其图形关于y轴 ...

  3. 关于BLOB/TEXT字段存储设计及性能的简单研究

    简单研究了一下BLOB/TEXT字段对数据库性能的影响,得到一个大概的结论:(未验证) 无论MySQL还是MSSQL,都可以通过把BLOB/TEXT数据存储在行外的方式提高性能 把BLOB/TEXT字 ...

  4. 【WXS数据类型】RegExp

    生成 regexp 对象需要使用 getRegExp函数,注意与JS的使用方法不同( new RegExp(pattern,modifiers);) 原型:getRegExp(pattern, mod ...

  5. lintcode204 单例

    单例   单例 是最为最常见的设计模式之一.对于任何时刻,如果某个类只存在且最多存在一个具体的实例,那么我们称这种设计模式为单例.例如,对于 class Mouse (不是动物的mouse哦),我们应 ...

  6. 【转】cocos2d工具汇总

    位图字体工具Bitmap Font Tools BMFont (Windows)FonteditorGlyph DesignerHieroLabelAtlasCreator 粒子编辑工具Particl ...

  7. smartgit 使用

    合并分支

  8. OpenMPI源码剖析4:rte.h 头文件的说明信息

    上一篇文章中说道,我们在 rte.h 中发现了有价值的说明: 我们一块一块来分析,首先看到第一块,关于 Process name Object: * (a) Process name objects ...

  9. 初涉 Deep Drive Dataset

    Berkeley 大学最近推出的针对自动驾驶的街景数据集,号称比 Cityscapes 数据量更大,可泛化性更好. 语义实例分割(Semantic Instance Segmentation) 数据集 ...

  10. Python+Flask+Gunicorn 项目实战(一) 从零开始,写一个Markdown解析器 —— 初体验

    (一)前言 在开始学习之前,你需要确保你对Python, JavaScript, HTML, Markdown语法有非常基础的了解.项目的源码你可以在 https://github.com/zhu-y ...