在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习。 理解颇浅,还请大神指点!

  http://blog.codinglabs.org/articles/algorithms-for-cardinality-estimation-part-ii.html

  它的基本处理方法和上篇中用bitmap统计的方法类似,但是最后要用到一个公式:

  说明:m为bitmap总位数,u为0的个数,最后的结果为n的一个估计,且为最大似然估计(MLE)。

  那么问题来了,最大似然估计是什么东东?好像在学概率论的时候听说过,于是又去搜索了一下MLE的信息。

MLE:(此处不使用概率论中的各种符号及表示方法,按我自己的理解写)

  以下内容参考链接:http://blog.csdn.net/yanqingan/article/details/6125812

  假设进行一个实验,实验次数定为10次,每次实验成功率为0.2,那么不成功的概率为0.8,用n来表示成功的次数。

  事件之间是相互独立的,于是可以得到成功次数的概率:

成功次数 0 1 2 3 4 5 6 7 8 9 10
概率 0.107374 0.268435 0.301990 0.201327 0.088080 0.026424 0.005505 0.000786 0.000074 0.000004 0.000000

   以上数据由下述程序计算:

 #include <stdio.h>
#define N 10
#define G 0.2 int factorial(int n)
{
int i;
int ret = ;
for(i = ; i <= n; ++i)
{
ret *= i;
}
return ret;
} double exponent(double m, int n)
{
int i;
double ret = ;
for(i = ; i < n; ++i)
{
ret *= m;
}
return ret;
} double fun(int n)
{
return ((double)factorial(N) / factorial(n) / factorial(N - n) * exponent(G, n) * exponent( - G, N - n));
} int main()
{
int i;
for(i = ; i <= N; ++i)
{
printf("%f\t", fun(i));
}
printf("\n");
}

  用excel做出它的图表

  而所谓概率密度,就是这一个个柱子的面积。公式如下:

  所谓的最大似然估计,就是在已知成功次数n的情况下,求出每次实验成功率的最可能的值。

  假设现已知成功次数为n=7,那么每次的成功概率ω可能是多少呢?

  可以代入式子:

  于是它成了P和ω的方程。

  既然成功次数为7,那么假设n=7时,P有极大值,即求上述方程极大值。借助excel,画出它的方程曲线图:

  即先求导,然后取导数的0点,即为最大可能概率:

  但是这样做又不方便,又容易出错,于是可以借助对数来进行处理:

  这样继续求解是不是方便多了呢?

  现在回到Linear Counting算法(具体一开始头上带^的n是怎么推导的可以查看一下开关的链接,或者“A linear-time probabilistic counting algorithm for database applications”)

  Linear Counting算法中,m是比n小的。我并不知道应该如何描述它,于是按个人的理解举个例子:

  假设一个网站一天有n个不同的人访问,现设一m位的bitmap,将“不同的人”传入哈希函数,传出的结果填入bitmap(可能重复),最后用bitmap中的分布情况来估计n的值。

  引用链接中的一个图:

  每个圈代表一个人,然后用bitmap中的分布情况估计出圈的个数。

  这样的估计是有误差的,所以应该对m的选择考虑一番。

  

结论:Linear Counting算法比直接用bitmap节约了常系数极的空间

Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))的更多相关文章

  1. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  2. CRC16算法之二:CRC16-CCITT-XMODEM算法的java实现

    CRC16算法系列文章: CRC16算法之一:CRC16-CCITT-FALSE算法的java实现 CRC16算法之二:CRC16-CCITT-XMODEM算法的java实现 CRC16算法之三:CR ...

  3. JVM-GC算法(二)-复制算法&&标记整理算法

    这次我和各位分享GC最后两种算法,复制算法以及标记/整理算法.上一篇在讲解标记/清除算法时已经提到过,这两种算法都是在此基础上演化而来的,究竟这两种算法优化了之前标记/清除算法的哪些问题呢? 复制算法 ...

  4. 数据结构与算法学习(二)——Master公式及其应用

    本篇文章涉及公式,由于博客园没有很好的支持,建议移步我的CSDN博客和简书进行阅读. 1. Master公式是什么? 我们在解决算法问题时,经常会用到递归.递归在较难理解的同时,其算法的复杂度也不是很 ...

  5. Opencv算法学习二

    1.直方图:图片中像素值分布情况的坐标图. 直方图均衡化:按一定规律拉伸像素值,提高像素值少的点,增加原图的对比度,使人感觉更清晰的函数. equalizeHist( src, dst ); 2.ha ...

  6. 疯子的算法总结(二) STL Ⅰ 算法 ( algorithm )

    写在前面: 为了能够使后续的代码具有高效简洁的特点,在这里讲一下STL,就不用自己写堆,写队列,但是做为ACMer不用学的很全面,我认为够用就好,我只写我用的比较多的. 什么是STL(STl内容): ...

  7. 五大常用算法之二:动态规划算法(DP)

    一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本 ...

  8. 四旋翼基础算法学习2-IMU输入滤波算法

    前言: 处理器读取陀螺仪加速度计数据后首先需要对数据进行滤波处理,此文分析比较几种常用的滤波算法. 参考学习:四轴加速度计滤波 IMU: IMU使用MPU9250(即MPU6500),设置加速度量程± ...

  9. 数据结构&算法(二)_算法基础之前传(递归、时间复杂度、空间复杂度、二分查找)

    什么是算法: 间而言之算法(Algorithm):一个计算过程,解决问题的方法 递归的两个特点: 调用自身 结束条件 递归示例: def func(x): : print("我的小鲤鱼&qu ...

随机推荐

  1. 使用单个httpclient实例请求数据。

    做J2EE的都知道httpclient这个工具,Android也自带这个工具,不过和J2EE上的不一样,可能是google在添加的时候,自己修改了一部分代码. 在J2EE中可以使用如下代码,在多线程的 ...

  2. 安装ubuntu server时候的多网卡问题

    安装的时候看到多个网卡,eth0,eth1,到系统中后只看见eth0 1.输入 ifconfig -a,这个时候如果能够看到多网卡,则在/etc/network/.interfaces中配置一下网卡就 ...

  3. CSS的nth-of-type和nth-child的区别

    <!--源代码--><!DOCTYPE html> <html lang="en"> <head> <meta charset ...

  4. ModuleNotFoundError: No module named 'Crypto'

    pycrypto已经舍弃了使用pycryptodome,pip uninstall pycrypto,然后安装pycryptodome,pip install pycryptodome 可能还需要改名 ...

  5. Android Fragment实现微信底部导航

    1.XML布局 (1)主界面 <?xml version="1.0" encoding="utf-8"?> <RelativeLayout x ...

  6. MySql安装错误代码1045的解决方案

    1.MySql安装错误代码1045的解决方案 2.root密码忘记1045的解决方案 错误代码 1045 Access denied for user 'root'@'localhost' (usin ...

  7. 51nod1238. 最小公倍数之和 V3(数论)

    题目链接 https://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题解 本来想做个杜教筛板子题结果用另一种方法过了...... 所谓 ...

  8. 获取LAMP与LNMP的编译参数

    1.查看nginx的编译参数[root@LNMP ~]# /application/nginx/sbin/nginx -Vnginx version: nginx/1.6.3built by gcc ...

  9. es第一篇:Getting Started

    es是一个近乎实时的搜索平台,这意味着从索引文档到文档可搜索,是有一点点延迟的(通常是一秒).es集群是一个或多个节点的集合,它们共同保存数据,并提供跨所有节点的联合索引和搜索功能.集群名由clust ...

  10. cucumber & selenium & bddtest

    目录 1.Cucumber介绍 refer link: 2.使用步骤 2.1 引入依赖 2.2新建test.future文件 2.3在resource目录下创建cucumber.bat,执行bat,c ...