Description

The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor. 
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction. 
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold: sum(j=1..N, fij) = sum(j=1..N, fji) Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij ≤ cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij ≥ lij
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above. 

Input

The first line of the input file contains the number N (1 ≤ N ≤ 200) - the number of nodes and and M — the number of pipes. The following M lines contain four integer number each - i, j, lij and cijeach. There is at most one pipe connecting any two nodes and 0 ≤ lij ≤ cij ≤ 105 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th. 

Output

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file. 

题目大意:用n个点,m条有向边,每条边有一个容量的上下界,求一个可行流,要求每个点的入流等于出流。

思路:记f[i] = ∑(u,i) - ∑(i,v),其中∑(u,i)为进入i的所有边的容量下界之和,∑(i,v)为离开i的所有边的容量下界之和。建立源点S汇点T,若f[i] ≥ 0,建一条边S→i,容量为f[i];若f[i] < 0,建一条边i→T,容量为f[i]的绝对值。对每一条边i→j,建一条边i→j,容量为上界减去下界。若最大流能使与S关联的边和与T关联的边都满流,则存在可行流,其中每条边的流量为其下界加上最大流图中的流量,否则不存在可行流。

小证明:上面的构图法乍看之下不知道为什么是对的,网上数学证明一大堆我就不说了(虽然都一样),现在我讲一种比较直观的理解。

对每一条边a→b,容量上界为up,下界为down。从S建一条边到b,容量为down;从a建一条边到T,容量为down;从a到b建一条边,容量为up-down。这样建图,若与S→b,a→T的流量都是满的,那么在原图中,我们就可以把S→b,a→T的流量换成是a→b的流量(a有down的流出,b有down的流入,满足把a有的流出,b有的流入放入边a→b,就满足了边的下界)。

之后,若对每一条边的两个点都建边到源点汇点太浪费了,所以源点S到某点i的边可以合起来,容量为∑(u,i);同样,某点i到汇点T的边也可以合起来,容量为∑(i,v);那么对每一个点i,都有从源点到i的边,从i到汇点的边,因为这两条边直接相连,我们只需要像上面构图所说的方法一样,保留一条就可以了。

代码(15MS):

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = MAXN * MAXN;
const int INF = 0x3fff3fff; struct SAP {
int head[MAXN], gap[MAXN], dis[MAXN], cur[MAXN], pre[MAXN];
int to[MAXE], next[MAXE], flow[MAXE], cap[MAXE];
int n, ecnt, st, ed; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; cap[ecnt] = c; flow[ecnt] = ; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cap[ecnt] = ; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
//printf("%d->%d %d\n", u, v, c);
} void bfs() {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(ed);
dis[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
++gap[dis[u]];
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p ^ ] && dis[v] > n) {
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int Max_flow(int ss, int tt, int nn) {
st = ss, ed = tt, n = nn;
int ans = , minFlow = INF, u;
for(int i = ; i <= n; ++i) {
cur[i] = head[i];
gap[i] = ;
}
u = pre[st] = st;
bfs();
while(dis[st] < n) {
bool flag = false;
for(int &p = cur[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[u] == dis[v] + ) {
flag = true;
minFlow = min(minFlow, cap[p] - flow[p]);
pre[v] = u;
u = v;
if(u == ed) {
ans += minFlow;
while(u != st) {
u = pre[u];
flow[cur[u]] += minFlow;
flow[cur[u] ^ ] -= minFlow;
}
minFlow = INF;
}
break;
}
}
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[v] < minDis) {
minDis = dis[v];
cur[u] = p;
}
}
if(--gap[dis[u]] == ) break;
++gap[dis[u] = minDis + ];
u = pre[u];
}
return ans;
}
} G; int n, m;
int f[MAXN];
int m_id[MAXE], m_down[MAXE]; int main() {
scanf("%d%d", &n, &m);
G.init();
int a, b, c, d, sum = ;
for(int i = ; i <= m; ++i) {
scanf("%d%d%d%d", &a, &b, &d, &c);
f[a] -= d;
f[b] += d;
m_down[i] = d;
m_id[i] = G.ecnt;
G.add_edge(a, b, c - d);
}
int ss = n + , tt = n + ;
for(int i = ; i <= n; ++i) {
if(f[i] >= ) G.add_edge(ss, i, f[i]), sum += f[i];
else G.add_edge(i, tt, -f[i]);
}
if(G.Max_flow(ss, tt, tt) != sum) {
puts("NO");
return ;
}
puts("YES");
for(int i = ; i <= m; ++i) printf("%d\n", m_down[i] + G.flow[m_id[i]]);
}

SGU 194 Reactor Cooling(无源无汇上下界可行流)的更多相关文章

  1. sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...

  2. SGU 176 Flow construction(有源汇上下界最小流)

    Description 176. Flow construction time limit per test: 1 sec. memory limit per test: 4096 KB input: ...

  3. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  4. ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...

  5. zoj 2314 Reactor Cooling (无源汇上下界可行流)

    Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...

  6. ZOJ2314 Reactor Cooling(无源汇上下界可行流)

    The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...

  7. hdu 4940 Destroy Transportation system (无源汇上下界可行流)

    Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  8. zoj2314 无源汇上下界可行流

    题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...

  9. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

随机推荐

  1. python 面向对象之添加功能

    '''**#实现功能**案列 姓名:王飞 年龄:30 性别:男 工龄:5我承诺,我会认真教课.王飞爱玩象棋 姓名:小明 年龄:15 性别:男 学号:00023102我承诺,我会 好好学习.小明爱玩足球 ...

  2. React--- react 初见React 总结

    简介 react 程序代码是透明的,需要什么装什么 代码实现逻辑清晰可见 第一天 React  基础构造 分别是  继承的 React.component(继承的依赖类)/dom(dom元素)/pro ...

  3. Java中connection的常用方法及其描述是什么

    1. close(), 关闭该数据库连接2. commit(), 提交所有更改内容并释放该Connection对象锁定的资源3. createStatement(), 基于本Connection对象, ...

  4. 3. HTML中的容器标签

    什么是容器标签?在HTML开发中我们常常会使用一类标签作为容器放置一些内容,我们把这类标签称之为容器标签,可以作为容器标签的包括列表标签.表格标签.框架标签.布局标签,在这里我们就来总结下这些内容. ...

  5. Java 面试题 百度/参考的答案

    "a=b"和"a.equals(b)"有什么区别? 如果 a 和 b 都是对象,则 a==b 是比较两个对象的引用,只有当 a 和 b 指向的是堆中的同一个对象 ...

  6. Qt上FFTW組件的编译与安裝

    Qt上FFTW組件的編譯安裝 FFTW是一個做頻譜非常實用的組件,本文講述在Windows和Linux兩個平臺使用FFTW組件.Windows下的的FFTW組件已經編譯好成爲dll文件,按照開發應用的 ...

  7. Leecode刷题之旅-C语言/python-344反转字符串

    /* * @lc app=leetcode.cn id=344 lang=c * * [344] 反转字符串 * * https://leetcode-cn.com/problems/reverse- ...

  8. Leecode刷题之旅-C语言/python-202快乐数

    /* * @lc app=leetcode.cn id=202 lang=c * * [202] 快乐数 * * https://leetcode-cn.com/problems/happy-numb ...

  9. Excelファイルを扱う方法

    概要 データをローカルに落としたいという要件がある場合.ユーザーはExcelを希望するケースが多いだろう.そんな時は以下の汎用モジュールを使用して簡単に作る事ができます.使用方法は.GUI_UPLOA ...

  10. 北京Uber优步司机奖励政策(1月3日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...