ZOJ 3204 Connect them(最小生成树+最小字典序)
Connect them
Time Limit: 1 Second Memory Limit: 32768 KB
You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers iand j is the same as connecting computers j and i). The cost of connecting computer i and computer j is cij. You cannot connect some pairs of computers due to some particular reasons. You want to connect them so that every computer connects to any other one directly or indirectly and you also want to pay as little as possible.
Given n and each cij , find the cheapest way to connect computers.
Input
There are multiple test cases. The first line of input contains an integer T (T <= 100), indicating the number of test cases. Then T test cases follow.
The first line of each test case contains an integer n (1 < n <= 100). Then n lines follow, each of which contains n integers separated by a space. The j-th integer of the i-th line in these n lines is cij, indicating the cost of connecting computers i and j (cij = 0 means that you cannot connect them). 0 <= cij <= 60000, cij = cji, cii = 0, 1 <= i, j <= n.
Output
For each test case, if you can connect the computers together, output the method in in the following fomat:
i1 j1 i1 j1 ......
where ik ik (k >= 1) are the identification numbers of the two computers to be connected. All the integers must be separated by a space and there must be no extra space at the end of the line. If there are multiple solutions, output the lexicographically smallest one (see hints for the definition of "lexicography small") If you cannot connect them, just output "-1" in the line.
Sample Input
2
3
0 2 3
2 0 5
3 5 0
2
0 0
0 0
Sample Output
1 2 1 3
-1
Hints:
A solution A is a line of p integers: a1, a2, ...ap.
Another solution B different from A is a line of q integers: b1, b2, ...bq.
A is lexicographically smaller than B if and only if:
(1) there exists a positive integer r (r <= p, r <= q) such that ai = bi for all 0 < i < r and ar < br
OR
(2) p < q and ai = bi for all 0 < i <= p
Author: CAO, Peng
Source: The 6th Zhejiang Provincial Collegiate Programming Contest
#include <iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int t,n;
int team[];
bool flag;
struct node
{
int x,y,cost;
node(int a,int b,int c){x=a;y=b;cost=c;}
};
struct cmp
{
bool operator()(node a,node b)
{
if (a.cost!=b.cost) return a.cost>b.cost;
else if (a.x!=b.x) return a.x>b.x;
else return a.y>b.y;
}//wa了一发,原因在这,只排了cost,没有考虑到如果cost相等应该也要先考虑字典序小的。
};
struct cmp2
{
bool operator()(node a,node b)
{
if (a.x!=b.x) return a.x>b.x;
else if (a.y!=b.y) return a.y>b.y;
}
};
int findteam(int k)
{
if (team[k]!=k) return team[k]=findteam(team[k]);
else return k;
}
int main()
{
while(~scanf("%d",&t))
{
for(;t>;t--)
{
scanf("%d",&n);
int l=;
priority_queue<node,vector<node>,cmp>Q;
priority_queue<node,vector<node>,cmp2>QQ;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
if (j>i && x!=)
Q.push(node(i,j,x));
}
for(int i=;i<=n;i++) team[i]=i;
flag=;
while(!Q.empty())
{
node u=Q.top();
Q.pop();
int teamx=findteam(u.x);
int teamy=findteam(u.y);
if (teamx!=teamy)
{
team[teamy]=teamx;
QQ.push(u);
}
int k=findteam();
flag=;
for(int i=;i<=n;i++)
if (k!=findteam(i)) {flag=; break;}
if(flag) break;
}
if (!flag) printf("-1\n");
else
{
int i=;
while(!QQ.empty())
{
node u=QQ.top();
QQ.pop();
if (i++) printf(" ");
printf("%d %d",u.x,u.y);
}
printf("\n");
}
}
} return ;
}
ZOJ 3204 Connect them(最小生成树+最小字典序)的更多相关文章
- ZOJ - 3204 Connect them 最小生成树
Connect them ZOJ - 3204 You have n computers numbered from 1 to n and you want to connect them to ma ...
- ZOJ 3204 Connect them(字典序输出)
主要就是将最小生成树的边按字典序输出. 读取数据时,把较小的端点赋给u,较大的端点号赋值给v. 这里要用两次排序,写两个比较器: 第一次是将所有边从小到大排序,边权相同时按u从小到大,u相同时按v从小 ...
- zoj 3204 Connect them(最小生成树)
题意:裸最小生成树,主要是要按照字典序. 思路:模板 prim: #include<iostream> #include<stdio.h> #include<string ...
- ZOJ 3204 Connect them MST-Kruscal
这道题目麻烦在输出的时候需要按照字典序输出,不过写了 Compare 函数还是比较简单的 因为是裸的 Kruscal ,所以就直接上代码了- Source Code : //#pragma comme ...
- ZOJ 3204 Connect them 继续MST
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3367 题目大意: 让你求最小生成树,并且按照字典序输出哪些点连接.无解输出-1 ...
- zoj 3204 Connect them
最小生成树,我用的是并查集+贪心的写法. #include<stdio.h> #include<string.h> #include<math.h> #includ ...
- [ACM_模拟] ZJUT 1155 爱乐大街的门牌号 (规律 长为n的含k个逆序数的最小字典序)
Description ycc 喜欢古典音乐是一个 ZJUTACM 集训队中大家都知道的事情.为了更方便地聆听音乐,最近 ycc 特意把他的家搬到了爱乐大街(德语Philharmoniker-Stra ...
- bzoj3168 钙铁锌硒维生素 (矩阵求逆+二分图最小字典序匹配)
设第一套为A,第二套为B 先对于每个B[i]判断他能否替代A[j],即B[i]与其他的A线性无关 设$B[i]=\sum\limits_{k}{c[k]*A[k]}$,那么只要看c[j]是否等于零即可 ...
- [模板] 匈牙利算法&&二分图最小字典序匹配
匈牙利算法 简介 匈牙利算法是一种求二分图最大匹配的算法. 时间复杂度: 邻接表/前向星: \(O(n * m)\), 邻接矩阵: \(O(n^3)\). 空间复杂度: 邻接表/前向星: \(O(n ...
随机推荐
- Linux学习笔记(8)文件搜索与帮助
帮助: (1) man ls (2) info ls (3) whatis ls (4) help 搜索: (1) which ls :查看ls命令所在绝对路径 (2) locate user ...
- python3条件表达式和字符串
1.布尔表达式 布尔表达式的值只有两个:真和假.在python中,真值为1,假值为0 2.逻辑操作符 三种逻辑操作:and.or.not 3.条件语句 if. if...else.if...elif. ...
- WinForm下的Nhibernate+Spring.Net的框架配置文件
1.先将配置文件放到如下:<?xml version="1.0" encoding="utf-8"?> <configuration> ...
- Android位置权限以及数组寻找索引的坑
填坑与求解惑来的. 一.Android 危险权限,来自官方文档的坑??? Android开发者都知道,Android 6.0 之前,权限申请只需要在 AndroidManifest.xml 文件中声明 ...
- 笔记-CSS空背景图片会导致页面被加载两次
如果页面样式的背景图片路径设置为'' 或 '#', 会导致页面被重复加载两次 (Chrome.56.0.2924.87 测试) 因为:空图片路径属性值,默认加载当前页面的URL作为图片路径 Safar ...
- NIO复习01
NIO 概述: 1. Java NIO 由以下几个核心部分组成:Channels Buffers Selectors 2. 主要Channel的实现:FileChann ...
- WPF使用Expression Design设计图形
1.将画好的图形通过菜单导出成WPF xaml格式. 2.导出的文件就可以直接在WPF程序中使用了. 这里导出的DrawingBrush, <?xml version="1.0&quo ...
- 无线安全之破解WPA/WPA2 加密WiFi
准备 可以使用无线网络的Kali Linux 由于古老的WPE加密的WiFi已经几乎没有了,所以这里我就不去细说如何破解WPE加密的WiFi了.今天就来聊聊 如何来使用Kali Linux来破解Wpa ...
- JSONObject使用方法
转载:http://blog.csdn.net/dongzhouzhou/article/details/8664569 1.JSONObject介绍 JSONObject-lib包是一个beans, ...
- kafka入门使用
kafka版本0.11.0.1以上自带zookeeper,必须要求环境中有jdk,解压后进入目录 1.在kafka解压目录下下有一个config的文件夹,里面放置的是我们的配置文件 consumer. ...