ZOJ 3204 Connect them(最小生成树+最小字典序)
Connect them
Time Limit: 1 Second Memory Limit: 32768 KB
You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers iand j is the same as connecting computers j and i). The cost of connecting computer i and computer j is cij. You cannot connect some pairs of computers due to some particular reasons. You want to connect them so that every computer connects to any other one directly or indirectly and you also want to pay as little as possible.
Given n and each cij , find the cheapest way to connect computers.
Input
There are multiple test cases. The first line of input contains an integer T (T <= 100), indicating the number of test cases. Then T test cases follow.
The first line of each test case contains an integer n (1 < n <= 100). Then n lines follow, each of which contains n integers separated by a space. The j-th integer of the i-th line in these n lines is cij, indicating the cost of connecting computers i and j (cij = 0 means that you cannot connect them). 0 <= cij <= 60000, cij = cji, cii = 0, 1 <= i, j <= n.
Output
For each test case, if you can connect the computers together, output the method in in the following fomat:
i1 j1 i1 j1 ......
where ik ik (k >= 1) are the identification numbers of the two computers to be connected. All the integers must be separated by a space and there must be no extra space at the end of the line. If there are multiple solutions, output the lexicographically smallest one (see hints for the definition of "lexicography small") If you cannot connect them, just output "-1" in the line.
Sample Input
2
3
0 2 3
2 0 5
3 5 0
2
0 0
0 0
Sample Output
1 2 1 3
-1
Hints:
A solution A is a line of p integers: a1, a2, ...ap.
Another solution B different from A is a line of q integers: b1, b2, ...bq.
A is lexicographically smaller than B if and only if:
(1) there exists a positive integer r (r <= p, r <= q) such that ai = bi for all 0 < i < r and ar < br
OR
(2) p < q and ai = bi for all 0 < i <= p
Author: CAO, Peng
Source: The 6th Zhejiang Provincial Collegiate Programming Contest
#include <iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int t,n;
int team[];
bool flag;
struct node
{
int x,y,cost;
node(int a,int b,int c){x=a;y=b;cost=c;}
};
struct cmp
{
bool operator()(node a,node b)
{
if (a.cost!=b.cost) return a.cost>b.cost;
else if (a.x!=b.x) return a.x>b.x;
else return a.y>b.y;
}//wa了一发,原因在这,只排了cost,没有考虑到如果cost相等应该也要先考虑字典序小的。
};
struct cmp2
{
bool operator()(node a,node b)
{
if (a.x!=b.x) return a.x>b.x;
else if (a.y!=b.y) return a.y>b.y;
}
};
int findteam(int k)
{
if (team[k]!=k) return team[k]=findteam(team[k]);
else return k;
}
int main()
{
while(~scanf("%d",&t))
{
for(;t>;t--)
{
scanf("%d",&n);
int l=;
priority_queue<node,vector<node>,cmp>Q;
priority_queue<node,vector<node>,cmp2>QQ;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
if (j>i && x!=)
Q.push(node(i,j,x));
}
for(int i=;i<=n;i++) team[i]=i;
flag=;
while(!Q.empty())
{
node u=Q.top();
Q.pop();
int teamx=findteam(u.x);
int teamy=findteam(u.y);
if (teamx!=teamy)
{
team[teamy]=teamx;
QQ.push(u);
}
int k=findteam();
flag=;
for(int i=;i<=n;i++)
if (k!=findteam(i)) {flag=; break;}
if(flag) break;
}
if (!flag) printf("-1\n");
else
{
int i=;
while(!QQ.empty())
{
node u=QQ.top();
QQ.pop();
if (i++) printf(" ");
printf("%d %d",u.x,u.y);
}
printf("\n");
}
}
} return ;
}
ZOJ 3204 Connect them(最小生成树+最小字典序)的更多相关文章
- ZOJ - 3204 Connect them 最小生成树
Connect them ZOJ - 3204 You have n computers numbered from 1 to n and you want to connect them to ma ...
- ZOJ 3204 Connect them(字典序输出)
主要就是将最小生成树的边按字典序输出. 读取数据时,把较小的端点赋给u,较大的端点号赋值给v. 这里要用两次排序,写两个比较器: 第一次是将所有边从小到大排序,边权相同时按u从小到大,u相同时按v从小 ...
- zoj 3204 Connect them(最小生成树)
题意:裸最小生成树,主要是要按照字典序. 思路:模板 prim: #include<iostream> #include<stdio.h> #include<string ...
- ZOJ 3204 Connect them MST-Kruscal
这道题目麻烦在输出的时候需要按照字典序输出,不过写了 Compare 函数还是比较简单的 因为是裸的 Kruscal ,所以就直接上代码了- Source Code : //#pragma comme ...
- ZOJ 3204 Connect them 继续MST
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3367 题目大意: 让你求最小生成树,并且按照字典序输出哪些点连接.无解输出-1 ...
- zoj 3204 Connect them
最小生成树,我用的是并查集+贪心的写法. #include<stdio.h> #include<string.h> #include<math.h> #includ ...
- [ACM_模拟] ZJUT 1155 爱乐大街的门牌号 (规律 长为n的含k个逆序数的最小字典序)
Description ycc 喜欢古典音乐是一个 ZJUTACM 集训队中大家都知道的事情.为了更方便地聆听音乐,最近 ycc 特意把他的家搬到了爱乐大街(德语Philharmoniker-Stra ...
- bzoj3168 钙铁锌硒维生素 (矩阵求逆+二分图最小字典序匹配)
设第一套为A,第二套为B 先对于每个B[i]判断他能否替代A[j],即B[i]与其他的A线性无关 设$B[i]=\sum\limits_{k}{c[k]*A[k]}$,那么只要看c[j]是否等于零即可 ...
- [模板] 匈牙利算法&&二分图最小字典序匹配
匈牙利算法 简介 匈牙利算法是一种求二分图最大匹配的算法. 时间复杂度: 邻接表/前向星: \(O(n * m)\), 邻接矩阵: \(O(n^3)\). 空间复杂度: 邻接表/前向星: \(O(n ...
随机推荐
- (转)基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...
- Go 结构体和map等数据结构转json字符串
Go语言中使用json包中的 Marshal() 函数将数据结构转成json字符串,源代码: func Marshal(v interface{}) ([]byte, error) { e := ne ...
- Redis二(Hash操作)
Hash操作 Hash操作,redis中Hash在内存中的存储格式如下图: hset(name, key, value) 1 2 3 4 5 6 7 8 9 # name对应的hash中设置一个键值对 ...
- 词性标注算法之CLAWS算法和VOLSUNGA算法
背景知识 词性标注:将句子中兼类词的词性根据上下文唯一地确定下来. 一.基于规则的词性标注方法 1.原理 利用事先制定好的规则对具有多个词性的词进行消歧,最后保留一个正确的词性. 2.步骤 ①对词性歧 ...
- Linux指令od和hexdump
Linux指令:od (octal dump) 示例用法:od -c hello Linux指令:od od命令用户通常使用od命令查看特殊格式的文件内容.通过指定该命令的不同选项可以以十进制.八进制 ...
- django【原生分页】
1.urls.py url(r'^page2/',views.page2), 2.views.py from django.core.paginator import Paginator,PageNo ...
- 系统间接口联调总是报500 for URL 和 乱码
两个系统做数据传输时,懒省事,直接访问 action 方式.结果总是报500,或者fileNotFount. 究其原因是因为两边的数据格式没对应上.post请求返回的格式是String,数据提供方返回 ...
- 虚拟环境virtualenv和virtualenvwrapper(转)
virtualenv是用来创建一个独立的Python虚拟环境的工具,通过virtualenv可以创建一个拥有独立的python版本和安装库的虚拟开发环境.这样一来我们就可以在虚拟环境中安装各种各种所需 ...
- mongodb的安装使用和pymongo基本使用
(1) mongodb的安装 下载tgz解压后,需要添加相应的环境变量才能在终端直接启动mongod. mongodb数据存储在/data/db中,需要手动创建目录树,同时mongod执行的时候如果权 ...
- Winform ObservableCollection 添加删除修改无效
WPF中ObservableCollection 可以很好的使用. 在Winform中,之前使用ObservableCollection 做了几个功能,貌似增删改都可以. 今天写个Demo的时候发现不 ...