ZOJ 3204 Connect them(最小生成树+最小字典序)
Connect them
Time Limit: 1 Second Memory Limit: 32768 KB
You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers iand j is the same as connecting computers j and i). The cost of connecting computer i and computer j is cij. You cannot connect some pairs of computers due to some particular reasons. You want to connect them so that every computer connects to any other one directly or indirectly and you also want to pay as little as possible.
Given n and each cij , find the cheapest way to connect computers.
Input
There are multiple test cases. The first line of input contains an integer T (T <= 100), indicating the number of test cases. Then T test cases follow.
The first line of each test case contains an integer n (1 < n <= 100). Then n lines follow, each of which contains n integers separated by a space. The j-th integer of the i-th line in these n lines is cij, indicating the cost of connecting computers i and j (cij = 0 means that you cannot connect them). 0 <= cij <= 60000, cij = cji, cii = 0, 1 <= i, j <= n.
Output
For each test case, if you can connect the computers together, output the method in in the following fomat:
i1 j1 i1 j1 ......
where ik ik (k >= 1) are the identification numbers of the two computers to be connected. All the integers must be separated by a space and there must be no extra space at the end of the line. If there are multiple solutions, output the lexicographically smallest one (see hints for the definition of "lexicography small") If you cannot connect them, just output "-1" in the line.
Sample Input
2
3
0 2 3
2 0 5
3 5 0
2
0 0
0 0
Sample Output
1 2 1 3
-1
Hints:
A solution A is a line of p integers: a1, a2, ...ap.
Another solution B different from A is a line of q integers: b1, b2, ...bq.
A is lexicographically smaller than B if and only if:
(1) there exists a positive integer r (r <= p, r <= q) such that ai = bi for all 0 < i < r and ar < br
OR
(2) p < q and ai = bi for all 0 < i <= p
Author: CAO, Peng
Source: The 6th Zhejiang Provincial Collegiate Programming Contest
#include <iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int t,n;
int team[];
bool flag;
struct node
{
int x,y,cost;
node(int a,int b,int c){x=a;y=b;cost=c;}
};
struct cmp
{
bool operator()(node a,node b)
{
if (a.cost!=b.cost) return a.cost>b.cost;
else if (a.x!=b.x) return a.x>b.x;
else return a.y>b.y;
}//wa了一发,原因在这,只排了cost,没有考虑到如果cost相等应该也要先考虑字典序小的。
};
struct cmp2
{
bool operator()(node a,node b)
{
if (a.x!=b.x) return a.x>b.x;
else if (a.y!=b.y) return a.y>b.y;
}
};
int findteam(int k)
{
if (team[k]!=k) return team[k]=findteam(team[k]);
else return k;
}
int main()
{
while(~scanf("%d",&t))
{
for(;t>;t--)
{
scanf("%d",&n);
int l=;
priority_queue<node,vector<node>,cmp>Q;
priority_queue<node,vector<node>,cmp2>QQ;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
if (j>i && x!=)
Q.push(node(i,j,x));
}
for(int i=;i<=n;i++) team[i]=i;
flag=;
while(!Q.empty())
{
node u=Q.top();
Q.pop();
int teamx=findteam(u.x);
int teamy=findteam(u.y);
if (teamx!=teamy)
{
team[teamy]=teamx;
QQ.push(u);
}
int k=findteam();
flag=;
for(int i=;i<=n;i++)
if (k!=findteam(i)) {flag=; break;}
if(flag) break;
}
if (!flag) printf("-1\n");
else
{
int i=;
while(!QQ.empty())
{
node u=QQ.top();
QQ.pop();
if (i++) printf(" ");
printf("%d %d",u.x,u.y);
}
printf("\n");
}
}
} return ;
}
ZOJ 3204 Connect them(最小生成树+最小字典序)的更多相关文章
- ZOJ - 3204 Connect them 最小生成树
Connect them ZOJ - 3204 You have n computers numbered from 1 to n and you want to connect them to ma ...
- ZOJ 3204 Connect them(字典序输出)
主要就是将最小生成树的边按字典序输出. 读取数据时,把较小的端点赋给u,较大的端点号赋值给v. 这里要用两次排序,写两个比较器: 第一次是将所有边从小到大排序,边权相同时按u从小到大,u相同时按v从小 ...
- zoj 3204 Connect them(最小生成树)
题意:裸最小生成树,主要是要按照字典序. 思路:模板 prim: #include<iostream> #include<stdio.h> #include<string ...
- ZOJ 3204 Connect them MST-Kruscal
这道题目麻烦在输出的时候需要按照字典序输出,不过写了 Compare 函数还是比较简单的 因为是裸的 Kruscal ,所以就直接上代码了- Source Code : //#pragma comme ...
- ZOJ 3204 Connect them 继续MST
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3367 题目大意: 让你求最小生成树,并且按照字典序输出哪些点连接.无解输出-1 ...
- zoj 3204 Connect them
最小生成树,我用的是并查集+贪心的写法. #include<stdio.h> #include<string.h> #include<math.h> #includ ...
- [ACM_模拟] ZJUT 1155 爱乐大街的门牌号 (规律 长为n的含k个逆序数的最小字典序)
Description ycc 喜欢古典音乐是一个 ZJUTACM 集训队中大家都知道的事情.为了更方便地聆听音乐,最近 ycc 特意把他的家搬到了爱乐大街(德语Philharmoniker-Stra ...
- bzoj3168 钙铁锌硒维生素 (矩阵求逆+二分图最小字典序匹配)
设第一套为A,第二套为B 先对于每个B[i]判断他能否替代A[j],即B[i]与其他的A线性无关 设$B[i]=\sum\limits_{k}{c[k]*A[k]}$,那么只要看c[j]是否等于零即可 ...
- [模板] 匈牙利算法&&二分图最小字典序匹配
匈牙利算法 简介 匈牙利算法是一种求二分图最大匹配的算法. 时间复杂度: 邻接表/前向星: \(O(n * m)\), 邻接矩阵: \(O(n^3)\). 空间复杂度: 邻接表/前向星: \(O(n ...
随机推荐
- 最大熵模型(Maximum Entropy Models)具体分析
因为本篇文章公式较多,csdn博客不同意复制公式,假设将公式一一保存为图片在上传太繁琐了,就用word排好版后整页转为图片传上来了.如有错误之处.欢迎指正.
- docker镜像制作---jdk7+tomcat7基础镜像
1. 安装docker rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm y ...
- 怎么找出解析失败的sql
本文由我和公司同事问心共同测试分析完成. 很多时候我们会有这样一个误区,语法错误或者对象不存在应该在语法语义检查这个步骤就结束了,怎么还会存在共享池里面呢?带着这个几个问题我们做几个简单的测试. 我们 ...
- 【转】XML的几种读写
XML文件是一种常用的文件格式,例如WinForm里面的app.config以及Web程序中的web.config文件,还有许多重要的场所都有它的身影.Xml是Internet环境中跨平台的,依赖于内 ...
- rails 单数 复数 大写 小写转换 下划线 驼峰命名
downcase 变小写 pluralize 复数 singularize 单数 camelcase 驼峰 underscore : “MyScore”.undersocre ==> my_s ...
- 执行用例,并生成报告——discover,HTMLRunner
HTMLRunner需要下载Python3的格式,懒人链接:http://pan.baidu.com/s/1tp3Ts 参考:http://bbs.chinaunix.net/thread-41547 ...
- nodejs多核处理
前言大家都知道nodejs是一个单进程单线程的服务器引擎,不管有多么的强大硬件,只能利用到单个CPU进行计算.所以,有人开发了第三方的cluster,让node可以利用多核CPU实现并行. 随着nod ...
- Web层辅助工具类
Java web开发中经常用到的一些方法: import java.io.BufferedReader; import java.net.InetAddress; import java.net.Un ...
- vue移动端 滚动 鼠标按下效果
<div class="item" :id="item.RowID" @touchstart="touchstart(item.RowID)&q ...
- MPU6050工作原理及STM32控制MPU6050
源:MPU6050工作原理及STM32控制MPU6050 MPU6050 介绍