Connect them


Time Limit: 1 Second      Memory Limit: 32768 KB

You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers iand j is the same as connecting computers j and i). The cost of connecting computer i and computer j is cij. You cannot connect some pairs of computers due to some particular reasons. You want to connect them so that every computer connects to any other one directly or indirectly and you also want to pay as little as possible.

Given n and each cij , find the cheapest way to connect computers.

Input

There are multiple test cases. The first line of input contains an integer T (T <= 100), indicating the number of test cases. Then T test cases follow.

The first line of each test case contains an integer n (1 < n <= 100). Then n lines follow, each of which contains n integers separated by a space. The j-th integer of the i-th line in these n lines is cij, indicating the cost of connecting computers i and j (cij = 0 means that you cannot connect them). 0 <= cij <= 60000, cij = cjicii = 0, 1 <= ij <= n.

Output

For each test case, if you can connect the computers together, output the method in in the following fomat:

i1 j1 i1 j1 ......

where ik ik (k >= 1) are the identification numbers of the two computers to be connected. All the integers must be separated by a space and there must be no extra space at the end of the line. If there are multiple solutions, output the lexicographically smallest one (see hints for the definition of "lexicography small") If you cannot connect them, just output "-1" in the line.

Sample Input

2
3
0 2 3
2 0 5
3 5 0
2
0 0
0 0

Sample Output

1 2 1 3
-1

Hints:
A solution A is a line of p integers: a1a2, ...ap.
Another solution B different from A is a line of q integers: b1b2, ...bq.
A is lexicographically smaller than B if and only if:
(1) there exists a positive integer r (r <= pr <= q) such that ai = bi for all 0 < i < r and ar < br 
OR
(2) p < q and ai = bi for all 0 < i <= p


Author: CAO, Peng
Source: The 6th Zhejiang Provincial Collegiate Programming Contest

#include <iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int t,n;
int team[];
bool flag;
struct node
{
int x,y,cost;
node(int a,int b,int c){x=a;y=b;cost=c;}
};
struct cmp
{
bool operator()(node a,node b)
{
if (a.cost!=b.cost) return a.cost>b.cost;
else if (a.x!=b.x) return a.x>b.x;
else return a.y>b.y;
}//wa了一发,原因在这,只排了cost,没有考虑到如果cost相等应该也要先考虑字典序小的。
};
struct cmp2
{
bool operator()(node a,node b)
{
if (a.x!=b.x) return a.x>b.x;
else if (a.y!=b.y) return a.y>b.y;
}
};
int findteam(int k)
{
if (team[k]!=k) return team[k]=findteam(team[k]);
else return k;
}
int main()
{
while(~scanf("%d",&t))
{
for(;t>;t--)
{
scanf("%d",&n);
int l=;
priority_queue<node,vector<node>,cmp>Q;
priority_queue<node,vector<node>,cmp2>QQ;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
if (j>i && x!=)
Q.push(node(i,j,x));
}
for(int i=;i<=n;i++) team[i]=i;
flag=;
while(!Q.empty())
{
node u=Q.top();
Q.pop();
int teamx=findteam(u.x);
int teamy=findteam(u.y);
if (teamx!=teamy)
{
team[teamy]=teamx;
QQ.push(u);
}
int k=findteam();
flag=;
for(int i=;i<=n;i++)
if (k!=findteam(i)) {flag=; break;}
if(flag) break;
}
if (!flag) printf("-1\n");
else
{
int i=;
while(!QQ.empty())
{
node u=QQ.top();
QQ.pop();
if (i++) printf(" ");
printf("%d %d",u.x,u.y);
}
printf("\n");
}
}
} return ;
}

ZOJ 3204 Connect them(最小生成树+最小字典序)的更多相关文章

  1. ZOJ - 3204 Connect them 最小生成树

    Connect them ZOJ - 3204 You have n computers numbered from 1 to n and you want to connect them to ma ...

  2. ZOJ 3204 Connect them(字典序输出)

    主要就是将最小生成树的边按字典序输出. 读取数据时,把较小的端点赋给u,较大的端点号赋值给v. 这里要用两次排序,写两个比较器: 第一次是将所有边从小到大排序,边权相同时按u从小到大,u相同时按v从小 ...

  3. zoj 3204 Connect them(最小生成树)

    题意:裸最小生成树,主要是要按照字典序. 思路:模板 prim: #include<iostream> #include<stdio.h> #include<string ...

  4. ZOJ 3204 Connect them MST-Kruscal

    这道题目麻烦在输出的时候需要按照字典序输出,不过写了 Compare 函数还是比较简单的 因为是裸的 Kruscal ,所以就直接上代码了- Source Code : //#pragma comme ...

  5. ZOJ 3204 Connect them 继续MST

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3367 题目大意: 让你求最小生成树,并且按照字典序输出哪些点连接.无解输出-1 ...

  6. zoj 3204 Connect them

    最小生成树,我用的是并查集+贪心的写法. #include<stdio.h> #include<string.h> #include<math.h> #includ ...

  7. [ACM_模拟] ZJUT 1155 爱乐大街的门牌号 (规律 长为n的含k个逆序数的最小字典序)

    Description ycc 喜欢古典音乐是一个 ZJUTACM 集训队中大家都知道的事情.为了更方便地聆听音乐,最近 ycc 特意把他的家搬到了爱乐大街(德语Philharmoniker-Stra ...

  8. bzoj3168 钙铁锌硒维生素 (矩阵求逆+二分图最小字典序匹配)

    设第一套为A,第二套为B 先对于每个B[i]判断他能否替代A[j],即B[i]与其他的A线性无关 设$B[i]=\sum\limits_{k}{c[k]*A[k]}$,那么只要看c[j]是否等于零即可 ...

  9. [模板] 匈牙利算法&&二分图最小字典序匹配

    匈牙利算法 简介 匈牙利算法是一种求二分图最大匹配的算法. 时间复杂度: 邻接表/前向星: \(O(n * m)\), 邻接矩阵: \(O(n^3)\). 空间复杂度: 邻接表/前向星: \(O(n ...

随机推荐

  1. Codeforces Round #245 (Div. 1)——Xor-tree

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u012476429/article/details/25607945 题目链接 题意: 给一棵树n个 ...

  2. PAT 1047 Student List for Course[一般]

    1047 Student List for Course (25 分) Zhejiang University has 40,000 students and provides 2,500 cours ...

  3. change the color of a disabled TEdit?

    change the color of a disabled TEdit? Author: P. Below Category: VCL {Question:How can I change the  ...

  4. Java集合(2):LinkedList

    一.LinkedList介绍 LinkedList也和ArrayList一样实现了List接口,但是它执行插入和删除操作时比ArrayList更加高效,因为它是基于链表的.基于链表也决定了它在随机访问 ...

  5. LeetCode:二叉树的后序遍历【145】

    LeetCode:二叉树的后序遍历[145] 题目描述 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很 ...

  6. 微信小程序学习笔记(3)--------框架之配置

    我们使用app.json文件来对微信小程序进行全局配置,决定页面文件的路径.窗口表现.设置网络超时时间.设置多 tab 等. app.json 配置项列表 属性 类型 必填 描述 pages Stri ...

  7. directorjs和requirejs和artTemplate模板引擒建立的SPA框架

    分为4块:A : index.html壳子.    加载B  init-config.js,   加载D  header.html模板B : init-config.js 个人信息+路由配置+权限+渲 ...

  8. NOIP 转圈游戏

    描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推 ...

  9. Spring_使用 NamedParameterJdbcTemplate

    applicationContext.xml <?xml version="1.0" encoding="UTF-8"?><beans xml ...

  10. spring security使用数据库验证的逻辑处理

    前面做了多个示例,包括使用jdbc和hibernate两种方式访问数据库获取用户信息和权限信息,其中一些关键步骤如下:   我们在SecurityConfig中配置覆盖configure方法时候,可以 ...