我们有这样一个文件

        

首先我们的思路是把输入文件数据转化成键值对的形式进行比较不就好了嘛!

但是你要明白这一点,我们平时所使用的键值对是不具有比较意义的,也就说他们没法拿来直接比较。

我们可以通过sortByKey,sortBy(pair._2)来进行单列的排序,但是没法进行两列的同时排序。

那么我们该如何做呢?

我们可以自定义一个键值对的比较类来实现比较,

类似于JAVA中自定义类实现可比较性实现comparable接口。

我们需要继承Ordered和Serializable特质来实现自定义的比较类。

1.读取数据创建rdd

2.根据要求来定义比较类

  任务要求,先根据key进行排序,相同再根据value进行排序。

  我们可以把键值对当成一个数据有两个数字,先通过第一个数字比大小,再通过第二个数字比大小。

  (1)我们定义两个Int参数的比较类

  (2)继承Ordered 和 Serializable 接口 实现 compare 方法实现可以比较

class UDFSort (val first:Int,val second:Int) extends Ordered[UDFSort] with Serializable {
override def compare(that: UDFSort): Int = {
if(this.first - that.first != 0){//第一个值不相等的时候,直接返回大小
this.first - that.first //返回值
}
else {//第一个值相等的时候,比较第二个值
this.second - that.second
}
}
}

其实,懂java的人能看出来这个跟实现comparable很类似。

3.处理rdd

我们将原始数据按照每行拆分成一个含有两个数字的数组,然后传入我们自定义的比较类中

不是可以通过UDFSort就可以比较出结果了吗,

但是我们不能把结果给拆分掉,也就是说,我们只能排序,不能改数据。

我们这样改怎么办?

我们可以生成键值对的形式,key为UDFSort(line(0),line(1)),value为原始数据lines。

这样,我们通过sortByKey就能完成排序,然后通过取value就可以保持原始数据不变。

4.排序取结果

完整代码

package SparkDemo

import org.apache.spark.{SparkConf, SparkContext}

class UDFSort (val first:Int,val second:Int) extends Ordered[UDFSort] with Serializable {//自定义比较类
override def compare(that: UDFSort): Int = {
if(this.first - that.first != 0){//第一个值不相等的时候,直接返回大小
this.first - that.first //返回值
}
else {//第一个值相等的时候,比较第二个值
this.second - that.second
}
}
}
object Sort{
def main(args:Array[String]): Unit ={
//初始化配置:设置主机名和程序主类的名字
val conf = new SparkConf().setAppName("UdfSort");
//通过conf来创建sparkcontext
val sc = new SparkContext(conf);
val lines = sc.textFile("file:///...")
//转换为( udfsort( line(0),line(1) ),line ) 的形式
val pair = lines.map(line => (new UDFSort(line.split(" ")(0).toInt,line.split(" ")(1).toInt),line))
//对key进行排序,然后取value
val result = pair.sortByKey().map( x => x._2)
}
}

  

【spark】示例:二次排序的更多相关文章

  1. 分别使用Hadoop和Spark实现二次排序

    零.序(注意本部分与标题无太大关系,可直接调至第一部分) 既然没用为啥会有序?原因不想再开一篇文章,来抒发点什么感想或者计划了,就在这里写点好了: 前些日子买了几本书,打算学习和研究大数据方面的知识, ...

  2. spark的二次排序

    通过scala实现二次排序 package _core.SortAndTopN import org.apache.spark.{SparkConf, SparkContext} /** * Auth ...

  3. Spark实现二次排序

    一.代码实现 package big.data.analyse.scala.secondsort import org.apache.log4j.{Level, Logger} import org. ...

  4. Spark基础排序+二次排序(java+scala)

    1.基础排序算法 sc.textFile()).reduceByKey(_+_,).map(pair=>(pair._2,pair._1)).sortByKey(false).map(pair= ...

  5. spark函数sortByKey实现二次排序

    最近在项目中遇到二次排序的需求,和平常开发spark的application一样,开始查看API,编码,调试,验证结果.由于之前对spark的API使用过,知道API中的sortByKey()可以自定 ...

  6. 详细讲解MapReduce二次排序过程

    我在15年处理大数据的时候还都是使用MapReduce, 随着时间的推移, 计算工具的发展, 内存越来越便宜, 计算方式也有了极大的改变. 到现在再做大数据开发的好多同学都是直接使用spark, hi ...

  7. Spark(二)算子详解

    目录 Spark(二)算子讲解 一.wordcountcount 二.编程模型 三.RDD数据集和算子的使用 Spark(二)算子讲解 @ 一.wordcountcount 基于上次的wordcoun ...

  8. MapReduce二次排序

    默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...

  9. Hadoop Mapreduce分区、分组、二次排序过程详解[转]

    原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2) ...

  10. Hadoop.2.x_高级应用_二次排序及MapReduce端join

    一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 == ...

随机推荐

  1. pop 在列表中和字典中的区别

    pop 在列表中和字典中的区别 字典中 pop() 语法:dict.pop(key,[value]) 说明:删除指定键及对应的值,如果在字典中不存在键及value,则返回pop()中指定的key对应的 ...

  2. 《深入理解Linux内核》阅读笔记 --- 第四章 中断和异常

    1.中断的作用:中断信号提供了一种方式,使处理器转而去运行正常控制流之外的代码.当一个中断信号到达时,CPU必须停止它当前所做的事,并切换到一个新的活动.为了做到这一点,就要在内核态堆栈保存程序计数器 ...

  3. Linux上free命令的输出及其他

    一.明确概念 A buffer is something that has yet to be "written" to disk.  A cache is something t ...

  4. 005-jdk安装卸载

    一.yum安装 1.查看CentOS自带JDK是否已安装. yum list installed |grep java 2.若有自带安装的JDK,卸载CentOS系统自带Java环境 卸载JDK相关文 ...

  5. Hadoop集群的配置的主机和IP

    集群配置如下: hadoop        192.168.80.100 hadoop1      192.168.80.101 hadoop2      192.168.80.102   (注:ha ...

  6. Vue.js——框架

    一.什么是VUE vue 是一个构建用户界面的javascript框架 特点:轻量,高效 特性:双向数据绑定,数据驱动视图 二.vue的使用 1.引入vue.js <script src=vue ...

  7. Java集合(6):TreeSet

    一.TreeSet介绍 与HashSet是基于HashMap实现一样,TreeSet是基于TreeMap实现的.TreeSet是一个有序集合,TreeSet中的元素将按照升序排列,缺省是按照自然排序进 ...

  8. centos7 firewall开放查看关闭端口

    查看所有打开的端口: firewall-cmd --zone=public --list-ports 添加 firewall-cmd --zone=public --add-port=80/tcp - ...

  9. 20145235李涛《网络对抗》Exp2 后门原理与实践

    Windows获得Linux Shell Linux获得windows shell 实验内容 使用netcat获取主机操作shell,cron启动 使用socat获取主机shell,任务计划启动 使用 ...

  10. 20145109《Java程序设计》第二周学习总结

    20145109 <Java程序设计>第二周学习总结 教材学习内容总结 Variable : naming rule : Camel case no default value e.g : ...