我们有这样一个文件

        

首先我们的思路是把输入文件数据转化成键值对的形式进行比较不就好了嘛!

但是你要明白这一点,我们平时所使用的键值对是不具有比较意义的,也就说他们没法拿来直接比较。

我们可以通过sortByKey,sortBy(pair._2)来进行单列的排序,但是没法进行两列的同时排序。

那么我们该如何做呢?

我们可以自定义一个键值对的比较类来实现比较,

类似于JAVA中自定义类实现可比较性实现comparable接口。

我们需要继承Ordered和Serializable特质来实现自定义的比较类。

1.读取数据创建rdd

2.根据要求来定义比较类

  任务要求,先根据key进行排序,相同再根据value进行排序。

  我们可以把键值对当成一个数据有两个数字,先通过第一个数字比大小,再通过第二个数字比大小。

  (1)我们定义两个Int参数的比较类

  (2)继承Ordered 和 Serializable 接口 实现 compare 方法实现可以比较

class UDFSort (val first:Int,val second:Int) extends Ordered[UDFSort] with Serializable {
override def compare(that: UDFSort): Int = {
if(this.first - that.first != 0){//第一个值不相等的时候,直接返回大小
this.first - that.first //返回值
}
else {//第一个值相等的时候,比较第二个值
this.second - that.second
}
}
}

其实,懂java的人能看出来这个跟实现comparable很类似。

3.处理rdd

我们将原始数据按照每行拆分成一个含有两个数字的数组,然后传入我们自定义的比较类中

不是可以通过UDFSort就可以比较出结果了吗,

但是我们不能把结果给拆分掉,也就是说,我们只能排序,不能改数据。

我们这样改怎么办?

我们可以生成键值对的形式,key为UDFSort(line(0),line(1)),value为原始数据lines。

这样,我们通过sortByKey就能完成排序,然后通过取value就可以保持原始数据不变。

4.排序取结果

完整代码

package SparkDemo

import org.apache.spark.{SparkConf, SparkContext}

class UDFSort (val first:Int,val second:Int) extends Ordered[UDFSort] with Serializable {//自定义比较类
override def compare(that: UDFSort): Int = {
if(this.first - that.first != 0){//第一个值不相等的时候,直接返回大小
this.first - that.first //返回值
}
else {//第一个值相等的时候,比较第二个值
this.second - that.second
}
}
}
object Sort{
def main(args:Array[String]): Unit ={
//初始化配置:设置主机名和程序主类的名字
val conf = new SparkConf().setAppName("UdfSort");
//通过conf来创建sparkcontext
val sc = new SparkContext(conf);
val lines = sc.textFile("file:///...")
//转换为( udfsort( line(0),line(1) ),line ) 的形式
val pair = lines.map(line => (new UDFSort(line.split(" ")(0).toInt,line.split(" ")(1).toInt),line))
//对key进行排序,然后取value
val result = pair.sortByKey().map( x => x._2)
}
}

  

【spark】示例:二次排序的更多相关文章

  1. 分别使用Hadoop和Spark实现二次排序

    零.序(注意本部分与标题无太大关系,可直接调至第一部分) 既然没用为啥会有序?原因不想再开一篇文章,来抒发点什么感想或者计划了,就在这里写点好了: 前些日子买了几本书,打算学习和研究大数据方面的知识, ...

  2. spark的二次排序

    通过scala实现二次排序 package _core.SortAndTopN import org.apache.spark.{SparkConf, SparkContext} /** * Auth ...

  3. Spark实现二次排序

    一.代码实现 package big.data.analyse.scala.secondsort import org.apache.log4j.{Level, Logger} import org. ...

  4. Spark基础排序+二次排序(java+scala)

    1.基础排序算法 sc.textFile()).reduceByKey(_+_,).map(pair=>(pair._2,pair._1)).sortByKey(false).map(pair= ...

  5. spark函数sortByKey实现二次排序

    最近在项目中遇到二次排序的需求,和平常开发spark的application一样,开始查看API,编码,调试,验证结果.由于之前对spark的API使用过,知道API中的sortByKey()可以自定 ...

  6. 详细讲解MapReduce二次排序过程

    我在15年处理大数据的时候还都是使用MapReduce, 随着时间的推移, 计算工具的发展, 内存越来越便宜, 计算方式也有了极大的改变. 到现在再做大数据开发的好多同学都是直接使用spark, hi ...

  7. Spark(二)算子详解

    目录 Spark(二)算子讲解 一.wordcountcount 二.编程模型 三.RDD数据集和算子的使用 Spark(二)算子讲解 @ 一.wordcountcount 基于上次的wordcoun ...

  8. MapReduce二次排序

    默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...

  9. Hadoop Mapreduce分区、分组、二次排序过程详解[转]

    原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2) ...

  10. Hadoop.2.x_高级应用_二次排序及MapReduce端join

    一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 == ...

随机推荐

  1. PYTHON 最佳实践指南(转)

    add by zhj: 本文参考了The Hitchhiker's Guide to Python,当然也加入了作者的一些东西.The Hitchhiker's Guide to Python 的gi ...

  2. pandas数据分析第二天

    一:汇总和计算描述统计 pandas对象拥有一组常用的数据和统计方法,用于从Series中提取单个值(sum,mean)或者从DataFrame的行或者列中提取一个Series对应的Numpy数组方法 ...

  3. EXP直接导出压缩问津,IMP直接导入压缩文件的方法

    在10G之前,甚至在10G的Oracle环境中,有很多数据量不大,重要性不太高的系统依然采用EXP/IMP逻辑导出备份方式,或者,作为辅助备份方式. 通常情况下,我们都是这样操作的:1.exp导出2. ...

  4. MFC实现简单飞机大战(含游戏声音)

    1 实验内容 本实验主要是实现简单的飞机大战游戏,包含游戏声音.碰撞后爆炸效果,有大小敌机等.所用到的知识点如下: 1.贴图技术 2.飞机类.子弹类实现 3.位图移动 4.碰撞判断,实现爆炸效果 5. ...

  5. nginx常用

    1.rewrite return 301 http://example.com$request_uri; rewrite ^ http://example.com permanent; 2.try_f ...

  6. CNN学习笔记:目标函数

    CNN学习笔记:目标函数 分类任务中的目标函数 目标函数,亦称损失函数或代价函数,是整个网络模型的指挥棒,通过样本的预测结果与真实标记产生的误差来反向传播指导网络参数学习和表示学习. 假设某分类任务共 ...

  7. springmvc get post put delete

    web.xml <!-- 配置 org.springframework.web.filter.HiddenHttpMethodFilter: 可以把 POST 请求转为 DELETE 或 POS ...

  8. C++中char类型的十六进制字符串转换成字节流

    如a[5]="1234"转换成a[5]={0x12,0x34} 代码如下: void HexStrToByte(const char* source, unsigned char* ...

  9. poj2993

    #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; stru ...

  10. ASP.NET MVC Bootstrap模板选中菜单高亮显示当前项方法

    当我们处理后台显示当前页面,当前页菜单项高亮,我们可以使用js方法,也可用程序实现,使用Bootstrap模板处理高亮并展开方法之一 1.在项目中导入 <script src="/as ...