Problem Description

Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.

In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.

Input

The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.

Output

For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.

Sample Input

2

0 0

1 1

2

1 1

1 1

3

-1.5 0

0 0

0 1.5

0

Sample Output

0.71

0.00

0.75

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std; typedef long long ll;
const int maxn=10005;
//const int INF=0x3f3f3f3f;
const double INF = 1e20;
const int N = 100005; int n;
int tmpt[N]; struct Point
{
double x;
double y;
} point[N]; bool cmp(const Point& a, const Point& b)
{
if(a.x != b.x)
return a.x < b.x;
return a.y < b.y;
} bool cmpy(const int& a, const int& b)
{
return point[a].y < point[b].y;
} double min(double a, double b)
{
return a < b ? a : b;
} double dis(int i, int j)
{
return sqrt((point[i].x-point[j].x)*(point[i].x-point[j].x)
+ (point[i].y-point[j].y)*(point[i].y-point[j].y));
} double Closest_Pair(int left, int right)
{
double d = INF;
if(left==right)
return d;
if(left + 1 == right)
return dis(left, right);
int mid = (left+right)>>1;
double d1 = Closest_Pair(left,mid);//分治求左边的最近点对
double d2 = Closest_Pair(mid+1,right);//分治求右边的最近点对
d = min(d1,d2);//求最小值
int i,j,k=0;
//分离出宽度为d的区间,求(m-d,m]和(m,m+d]之间的最近点对
//将在(m-d,m]范围内s1中的p和(m,m+d]范围内的点投影到一条直线
//然后将这些点按y坐标排序,进行线性扫描
for(i = left; i <= right; i++)
{
if(fabs(point[mid].x-point[i].x) <= d)
tmpt[k++] = i;
}
sort(tmpt,tmpt+k,cmpy);
//线性扫描
for(i = 0; i < k; i++)
{
for(j = i+1; j < k && point[tmpt[j]].y-point[tmpt[i]].y<d; j++)
{
double d3 = dis(tmpt[i],tmpt[j]);
if(d > d3)
d = d3;
}
}
return d;
} int main()
{
while(~scanf("%d",&n)&&n)
{
for(int i = 0; i < n; i++)
scanf("%lf %lf",&point[i].x,&point[i].y);
sort(point,point+n,cmp);
printf("%.2lf\n",Closest_Pair(0,n-1)/2);
}
return 0;
}

(hdu1007)Quoit Design,求最近点对的更多相关文章

  1. HDU-1007 Quoit Design 平面最近点对

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 简单裸题,测测模板,G++速度快了不少,应该是编译的时候对比C++优化了不少.. //STATU ...

  2. Quoit Design(最近点对+分治)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  3. HDU1007 Quoit Design 【分治】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  4. HDU1007 Quoit Design掷环游戏

    Quoit Design 看懂题意以后发现就是找平面最近点对间距离除以2. 平面上最近点对是经典的分治,我的解析 直接上代码 #include<bits/stdc++.h> using n ...

  5. HDOJ-1007 Quoit Design(最近点对问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 给出n个玩具(抽象为点)的坐标 求套圈的半径 要求最多只能套到一个玩具 实际就是要求最近的两个坐标的距离 ...

  6. 【HDOJ】P1007 Quoit Design (最近点对)

    题目意思很简单,意思就是求一个图上最近点对. 具体思想就是二分法,这里就不做介绍,相信大家都会明白的,在这里我说明一下如何进行拼合. 具体证明一下为什么只需要检查6个点 首先,假设当前左侧和右侧的最小 ...

  7. HDU1007.Quoit Design

    -- 点我 -- 题目大意 :给你一堆点,求一个最小圆能够覆盖两个点的半径(最近两点距离的一半): 最多100000个点,暴力即O(n^2)会超时,考虑二分,先求左边最短距离dl,右边dr, 和一个点 ...

  8. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  9. Quoit Design(hdu1007)最近点对问题。模版哦!

    Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. asp.net RDLC报表入门

    Asp.net RDLC 报表入门 这几天帮给同事讲解Asp.net RDLC 报表方面的知识,顺便做个简单教程,在这里分享给大家. 由于图片多又大,写了一半,光上传图片就把我累个半死,所以我教把程放 ...

  2. Windows下端口占用查看

    假如我们需要确定谁占用了我们的80端口 1.Windows平台在windows命令行窗口下执行:C:\>netstat -aon|findstr "80" TCP     1 ...

  3. NDK---使用,开发步骤

    使用NDk的场景: 1.某些方法,是使用C,C++本地代码实现的,然后,我想在Java中调用这些方法.这个时候,就需要使用到JNI技术. 应用NDK的时候,分两个部分,Java部分,JNI层部分,本地 ...

  4. 【Atcoder】ARC084 Small Multiple

    [题意]求一个k的倍数使其数位和最小,输出数位和,k<=10^5. [算法]最短路 [题解]考虑极端情况数字是可能爆long long的(例如k*num=100...000),所以确定基本方向是 ...

  5. 【BZOJ】1754: [Usaco2005 qua]Bull Math

    [算法]高精度乘法 #include<cstdio> #include<algorithm> #include<cstring> using namespace s ...

  6. Linux汇编教程03:大小比较操作

    我们在上一讲中,简单了解了汇编程序大概的样子.接下来我们来了解一下,汇编程序的大小比较操作.所以我们以编写寻找一堆数中的最大值作为学习的载体. 在编写程序之前,先要分析我们的目的,在得出解决方案. 目 ...

  7. 64_m2

    mimetic-devel-0.9.8-7.fc26.i686.rpm 12-Feb-2017 05:40 288474 mimetic-devel-0.9.8-7.fc26.x86_64.rpm 1 ...

  8. Meld:文件及目录对比工具

    Meld:文件及目录对比工具 http://wowubuntu.com/meld.html http://meld.sourceforge.net/

  9. 【UOJ#169】元旦老人与数列

    论文题. 考虑到这题的维护和区间操作是反向的,也就是说无法像V那题快速的合并标记. 我们知道,一个区间的最小值和其他值是可以分开来维护的,因为如果一个区间被整体覆盖,那么最小值始终是最小值. 对于被覆 ...

  10. bzoj 1179 Atm

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1179 题解: 一道比较综合的图论题 直接讲正解: 如果这个图G中存在某个强连通分量,那么这 ...