【BZOJ4517】【SDOI2016】排列计数 [数论]
排列计数
Time Limit: 60 Sec Memory Limit: 128 MB
[Submit][Status][Discuss]
Description
Input
Output
输出 T 行,每行一个数,表示求出的序列数
Sample Input
1 0
1 1
5 2
100 50
10000 5000
Sample Output
1
20
578028887
60695423
HINT
Main idea
求所有排列中恰好有m个 a[i]=i 的个数。
Solution
直接运用组合数和错排公式上一波即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<map>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9+; int T,n,m;
int fac[ONE], inv[ONE], D[ONE]; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} int Quickpow(int a, int b)
{
int res = ;
while(b)
{
if(b & ) res = (s64)res * a % MOD;
a = (s64)a * a % MOD;
b >>= ;
}
return res;
} void Deal_first()
{
int Limit = ONE-; fac[] = ;
for(int i=; i<=Limit; i++)
fac[i] = (s64)fac[i-] * i % MOD; inv[Limit] = Quickpow(fac[Limit], MOD-);
for(int i=Limit-; i>=; i--)
inv[i] = (s64)inv[i+] * (i+) % MOD; D[] = D[] = ;
for(int i=; i<=Limit; i++)
D[i] = (s64)(i-) * (D[i-] + D[i-]) % MOD;
} int C(int n,int m)
{
if(n == m) return ;
return (s64)fac[n] * inv[m] % MOD * inv[n-m] % MOD;
} int Query(int n,int m)
{
return (s64)C(n,m) * D[n-m] % MOD;
} int main()
{
Deal_first();
T = get();
while(T--)
{
n = get(); m = get();
printf("%d\n", Query(n,m));
}
}
【BZOJ4517】【SDOI2016】排列计数 [数论]的更多相关文章
- BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*
BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...
- [BZOJ4517][SDOI2016]排列计数(错位排列)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1616 Solved: 985[Submit][Statu ...
- bzoj4517[Sdoi2016]排列计数(组合数,错排)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1792 Solved: 1111[Submit][Stat ...
- [BZOJ4517] [Sdoi2016] 排列计数 (数学)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
- 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)
传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...
- BZOJ4517——[Sdoi2016]排列计数
求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...
- BZOJ4517: [Sdoi2016]排列计数
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
- bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数
http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...
- BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
随机推荐
- java键盘IO
public class IO { public static void main(String[] args) throws Throwable { ScannerTest(); // testSc ...
- iOS-根据两个经纬度计算相距距离
CLLocation *orig=[[[CLLocation alloc] initWithLatitude:[mainDelegate.latitude_self doubleValue] long ...
- <Effective C++>读书摘要--Templates and Generic Programming<一>
1.The initial motivation for C++ templates was straightforward: to make it possible to create type-s ...
- python获取本地时间
python本地时间 import time # 格式化成2016-03-20 11:45:39形式 now = time.strftime("%Y-%m-%d %H:%M:%S" ...
- 基于实现Controller接口的简单Spring工程
这个Spring工程的特点是:实现了Controller接口(这样就可以在url中传参数?,待调查) 一下为代码,可运行. 1,web.xml <servlet> <servlet- ...
- 异步请求Python库 grequests的应用和与requests库的响应速度的比较
requests库是python一个优秀的HTTP库,使用它可以非常简单地执行HTTP的各种操作,例如GET.POST等.不过,这个库所执行的网络请求都是同步了,即cpu发出请求指令后,IO执行发送和 ...
- [计算机网络] TCP的拥塞控制
引言 计算机网络中的带宽.交换结点中的缓存和处理机等,都是网络的资源.在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就会变坏.这种情况就叫做拥塞. 拥塞控制就是防止过多 ...
- MATLAB strcmp
比较两个输入字符串是否相等 c = strcmp(str1,str2)比较字符串 str1 与 str2 ,若完全相等则返回 1 ,不相等返回 0 str1 = 'hello'; str2 = 'he ...
- 【bzoj1858】[Scoi2010]序列操作 线段树区间合并
题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...
- poj 1422 Air Raid (二分匹配)
Air Raid Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6520 Accepted: 3877 Descript ...