2019.06.17课件:[洛谷P1310]表达式的值 题解
P1310 表达式的值
题目描述
给你一个带括号的布尔表达式,其中+表示或操作|,*表示与操作&,先算*再算+。但是待操作的数字(布尔值)不输入。
求能使最终整个式子的值为0的方案数。
题外话
不久之前我在codewars上做过一道类似的题目。

以及把它搬运到了洛谷上。


布尔表达式计数问题
考虑这样一个问题:
有两个布尔变量\(x\)和\(y\)。
我们知道使\(x\)等于1的方案有\(x_1\)种,等于0的方案有\(x_0\)种;使\(y\)等于1的方案有\(y_1\)种,等于0的方案有\(y_0\)种。
那么:
使\(x\&y\)为1的方案数?为0的方案数?
使\(x|y\)为1的方案数?为0的方案数?
使\(x\oplus y\)(通常我们使用\(\oplus\)表示异或)为1的方案数?为0的方案数?
不难发现:
使\(x\&y\)为1,那么\(x\)和\(y\)都要为1,所以方案数为\(x_1*y_1\)。
使\(x\&y\)为0,那么\(x\)和\(y\)不能都为1,所以方案数为\(x_1*y_0+x_0*y_1+x_0*y_0\)。
使\(x|y\)为1的方案数为\(x_1*y_1+x_0*y_1+x_1*y_0\),为0的方案数为\(x_0*y_0\)。
使\(x\oplus y\)为1的方案数为\(x_0*y_1+x_1*y_0\),为0的方案数为\(x_0*y_0+x_1*y_1\)。
表达式树,前缀表达式,中缀表达式,后缀表达式
表达式树

\((1+2)*4\)
如上图,每个叶节点是一个数字,其他节点都是(双目)运算符。
整棵树表示一个表达式。每个子树表示一个子表达式。
计算这个表达式的方式如下图。


所以值为12。
中序遍历
中序遍历这个表达式树,我们发现得到的结果几乎和原来的表达式一样。
只是需要加一些括号罢了。
处理方法:我们可以给每个子树前后都加一对括号。
前/后序遍历
称前序遍历得到的式子为前缀表达式,或者波兰表达式。称后序遍历得到的式子为后缀表达式,或者逆波兰表达式。
前缀表达式和后缀表达式都拥有一个优秀的性质:不需要括号。
(下面仅以后缀表达式为例)
比如上文的\((1+2)*4\),改为后缀表达式就是:\(1\ 2\ +\ 4\ *\)。
如何计算后缀表达式
我们可以用栈来处理:
遇到数字,入栈;遇到符号,从栈里取出两个数字,按照这个符号运算,然后把结果入栈。最后栈里剩下的就是结果。
\(1\ 2\ +\ 4\ *\)的计算过程如下:
| 1入栈 | 1 | |
| 2入栈 | 1 | 2 |
| 1 2出栈,相加得3,3入栈 | 3 | |
| 4入栈 | 3 | 4 |
| 3 4出栈,相乘得12,12入栈 | 12 |
所以答案是12。
如何转化为后缀表达式
你可以直接建树,跑后序遍历。
但是这样又不好写,又慢。
我们考虑用栈维护。
遍历中缀表达式:
遇到数字,直接放入答案序列
遇到左括号,入栈
遇到右括号,把栈顶到上一个左括号的元素依次出栈并放入答案序列
遇到乘号,入栈
遇到加号,从栈顶开始弹出这段连续的乘号,并放入答案序列,最后加号入栈
最后把栈里剩下的元素依次放入答案序列
为什么是正确的?
模拟\(1+1*2*(1+2)+3*2*(1*5)+1\)
| 说明 | 栈 | 答案序列 |
|---|---|---|
| 1放入答案序列 | 1 | |
| +入栈 | + | 1 |
| 1放入答案序列 | + | 11 |
| *入栈 | +* | 11 |
| 2放入答案序列 | +* | 112 |
| *入栈 | +** | 112 |
| (入栈 | +**( | 112 |
| 1放入答案序列 | +**( | 1121 |
| +入栈 | +**(+ | 1121 |
| 2放入答案序列 | +**(+ | 11212 |
| 出现),+出栈并放入答案序列,(出栈 | +** | 11212+ |
| 出现+,弹出栈顶的*并放入答案序列,然后+入栈 | ++ | 11212+** |
| 3放入答案序列 | ++ | 11212+**3 |
| *入栈 | ++* | 11212+**3 |
| 2放入答案序列 | ++* | 11212+**32 |
| *入栈 | ++** | 11212+**32 |
| (入栈 | ++**( | 11212+**32 |
| 1放入答案序列 | ++**( | 11212+**321 |
| *入栈 | ++**(* | 11212+**321 |
| 5放入答案序列 | ++**(* | 11212+**3215 |
| 出现),*出栈并放入答案序列,(出栈 | ++** | 11212+**3215* |
| 出现+,弹出栈顶的*并放入答案序列,然后+入栈 | +++ | 11212+**3215*** |
| 1放入答案序列 | +++ | 11212+**3215***1 |
| 剩余栈中元素放入答案序列 | 11212+**3215***1+++ |
所以答案是11212+**3215***1+++。
正确性?
11212+**3215***1+++&=112(12+)**32(15*)**1+++\\
&=1123**325**1+++\\
&=11(23*)*3(25*)*1+++\\
&=116*3(10)*1+++\\
&=1(16*)(3(10)*)1+++\\
&=16(30)1+++\\
&=16(31)++\\
&=1(37)+\\
&=38\\
\\
1+1*2*(1+2)+3*2*(1*5)+1&=1+2*3+6*5+1\\
&=1+6+30+1\\
&=38\\
\end{aligned}
\]
P1310题解
首先在输入的表达式的恰当位置插入未知变量,然后转为后缀表达式。当然也可以一边转,一边插入未知变量。
之后,我们计算这个后缀表达式的值。不过维护的信息不再是表达式的值,而是使表达式值为0或1的方案数。
注意到单个变量为0或1的方案数为1.
#include <bits/stdc++.h>
using namespace std;
inline void read(int &num)
{
bool flag = 0;
num = 0;
char c = getchar();
while ((c < '0' || c > '9') && c != '-')
c = getchar();
if (c == '-')
{
flag = 1;
c = getchar();
}
num = c - '0';
c = getchar();
while (c >= '0' && c <= '9')
num = (num << 3) + (num << 1) + c - '0', c = getchar();
if (flag)
num *= -1;
}
inline void output(int num)
{
if (num < 0)
{
putchar('-');
num = -num;
}
if (num >= 10)
output(num / 10);
putchar(num % 10 + '0');
}
inline void outln(int num)
{
output(num);
puts("");
}
inline void outln(string str)
{
puts(str.c_str());
}
//以上为头文件和快读
const int mod = 10007;
const int N = 100001;
int n;
char str[N]; //输入的中缀表达式
stack<char> sta; //转后缀表达式时使用的栈
string final; //后缀表达式(答案序列)
stack<int> zero, one; //zero维护使表达式值为0的方案个数,one维护使表达式值为1的方案个数
int main()
{
read(n);
scanf("%s", str + 1);
final.push_back('n'); //后缀表达式最开始应该有一个未知变量
for (int i = 1; i <= n; i++)
{
if (str[i] == '(' || str[i] == '*') //遇到左括号或乘号,入栈
sta.push(str[i]);
if (str[i] == '+') //遇到加号,弹出栈顶的乘号,然后加号入栈
{
while (!sta.empty() && sta.top() == '*')
{
final.push_back(sta.top());
sta.pop();
}
sta.push(str[i]);
}
if (str[i] == ')') //右括号,把到上一个左括号的元素出栈放入答案序列
{
while (sta.top() != '(')
{
final.push_back(sta.top());
sta.pop();
}
sta.pop();
}
if (str[i] != '(' && str[i] != ')') //当不是左括号或者右括号时,应该插入一个未知变量
{
final.push_back('n');
}
}
while (!sta.empty()) //剩下的元素放入答案序列
{
final.push_back(sta.top());
sta.pop();
}
for (char c : final) //遍历后缀表达式,这里使用了c++11的写法,相当于
// for (int i = 0; i < final.size(); i++)
// { char c = final[i];
{
if (c == 'n') //单个变量,方案数为1
{
one.push(1);
zero.push(1);
}
else
{
//rone表示右操作数(即上文中的y)为1的方案数(即上文中的y1),rzero同理
int rone = one.top(), rzero = zero.top();
one.pop();
zero.pop();
//同理
int lone = one.top(), lzero = zero.top();
one.pop();
zero.pop();
if (c == '*') //与操作,为1需要都为1,为0需要不都为1
{
one.push(lone * rone % mod);
zero.push((lone * rzero % mod + lzero * rone % mod + lzero * rzero % mod) % mod);
}
else //或操作,为0需要都为0,为1需要不都为0
{
zero.push(lzero * rzero % mod);
one.push((lone * rzero % mod + lzero * rone % mod + lone * rone % mod) % mod);
}
}
}
outln(zero.top());//需要整个表达式的值为0
}
2019.06.17课件:[洛谷P1310]表达式的值 题解的更多相关文章
- 洛谷P1310 表达式的值 题解 栈/后缀表达式的应用
题目链接:https://www.luogu.org/problem/P1310 本题涉及算法:栈.前缀表达式转后缀表达式,动态规划思想. 这道题目我思考了好长时间,第一时间让我做的话我也做不出来. ...
- 洛谷P1310 表达式的值——题解
题目传送 题的难点:1.有运算优先级,不好判断.2.有破坏整体和谐性的讨厌的括号.3.不知道哪里要填数.4.要求方案数很大,搜索不会做呐. 发现难点1和2都是中缀表达式的缺点.转成后缀表达式后难点1. ...
- 洛谷 P1310 表达式的值 解题报告
P1310 表达式的值 题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. "× "运算优先于"⊕"运算,即计算表 ...
- 洛谷P1310 表达式的值
P1310 表达式的值 题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例 ...
- 【洛谷P1310 表达式的值】
题目链接 题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式 ...
- 洛谷P1981 表达式求值 题解 栈/中缀转后缀
题目链接:https://www.luogu.org/problem/P1981 这道题目就是一道简化的中缀转后缀,因为这里比较简单,只有加号(+)和乘号(*),所以我们只需要开一个存放数值的栈就可以 ...
- 洛谷 P1981 表达式求值
P1981 表达式求值 题目描述 给定一个只包含加法和乘法的算术表达式,请你编程计算表达式的值. 输入输出格式 输入格式: 输入文件为 expr.in. 输入仅有一行,为需要你计算的表达式,表达式中只 ...
- 题解-洛谷P1981 表达式求值(模拟+处理优先级的递归)
https://www.luogu.org/problemnew/show/P1981 (原题链接) 显然乘法的优先级高与加法,因此碰到乘号就要优先把一连串与乘号相连的数算出,很容易想到递归.可用普通 ...
- 洛谷 P1981 表达式求值(模拟)
嗯... 题目链接:https://www.luogu.org/problem/P1981 这道题其实是数组模拟栈.首先处理乘法:注意从后往前处理,处理后归零.然后把数都加起来即可. AC代码: #i ...
随机推荐
- Docker基础理论整理(精简)
目录 一.什么是docker,docker的概念 二.docker中的镜像 三.docker中的容器 四.docker中的仓库 五.docker的网络通信 bridge模式 host模式 contai ...
- scikit-learn中的机器学习算法封装——kNN
接前面 https://www.cnblogs.com/Liuyt-61/p/11738399.html 回过头来看这张图,什么是机器学习?就是将训练数据集喂给机器学习算法,在上面kNN算法中就是将特 ...
- Aure Event Hubs小白完全入门指南
refer to https://www.cnblogs.com/mysunnytime/p/11634815.html?from=groupmessage&isappinstalled=0 ...
- Linux网络编程综合运用之MiniFtp实现(三)
前面已经对FTP相关的一些概念有了基本的认识,接下来就要进入代码编写阶段了,也是非常兴奋的阶段,在开启这个它之前先对项目需求进行一个梳理,对其我们要实现的FTP服务器是一个什么样子. ftp命令列表 ...
- golang 时间的比较,time.Time的初始值?
参考: https://golangcode.com/checking-if-date-has-been-set/ https://stackoverflow.com/questions/209243 ...
- WARNING: 'automake-1.14' is missing on your system.
检查发现其实已经安装了automake,只不过版本是automake-1.15.1 $ automake --version automake (GNU automake) 1.15.1 解决方法一 ...
- 16 关于webpack和npm中几个问题的说明
1.json里面不能写注释 2.'webpack-dev-server'不是内部或外部命令,也不是可运行的程序或批处理文件. 注意:webpack-dev-server包只需要本地安装就行,不用全局安 ...
- js中event.preventDefault()和 event.stopPropagation( ) 方法详解
event.preventDefault() 1.首先event.preventDefault()是通知浏览器不要执行与事件关联的默认动作,例如: 这里a标签的默认事件是跳转,这里我们告诉浏览器取消 ...
- 获取Druid连接池里当前连接数
JdbcTemplate jdbcTemplate=(JdbcTemplate) SpringUtils.getBean("jdbcMysqlTemplate"); DruidDa ...
- Ubuntu 下python开发环境的搭建
一.安装python3 ubuntu自身是安装python2的,例如在ubuntu 16.04中安装的就是python2.7.但我想在python3的环境下进行开发所以就要安装python3.但由于u ...