tensorflow源码分析——BasicLSTMCell
BasicLSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py。
BasicLSTMCell 继承了RNNCell,源码位于:/tensorflow/python/ops/rnn_cell_impl.py
注意事项:
1. input_size 这个参数不能使用,使用的是num_units
2. state_is_tuple 官方建议设置为True。此时,输入和输出的states为c(cell状态)和h(输出)的二元组
3. 输入、输出、cell的维度相同,都是 batch_size * num_units,
cell = tf.contrib.rnn.BasicLSTMCell(num_units, forget_bias=0.0, state_is_tuple=True) #指定num_units
_initial_state = cell.zero_state(batch_size, tf.float32) #指定batch_size,将c和h全部初始化为0,shape全是batch_size * num_units,
4.
class BasicLSTMCell(RNNCell):
"""Basic LSTM recurrent network cell. The implementation is based on: http://arxiv.org/abs/1409.2329. We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training. It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline. For advanced models, please use the full LSTMCell that follows.
""" def __init__(self, num_units, forget_bias=1.0, input_size=None,
state_is_tuple=True, activation=tanh):
"""Initialize the basic LSTM cell. Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
activation: Activation function of the inner states.
"""
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation @property
def state_size(self):
return (LSTMStateTuple(self._num_units, self._num_units)
if self._state_is_tuple else 2 * self._num_units) @property
def output_size(self):
return self._num_units def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with vs.variable_scope(scope or "basic_lstm_cell"):
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1) # 线性计算 concat = [inputs, h]W + b
# 线性计算,分配W和b,W的shape为(2*num_units, 4*num_units), b的shape为(4*num_units,),共包含有四套参数,
# concat shape(batch_size, 4*num_units)
# 注意:只有cell 的input和output的size相等时才可以这样计算,否则要定义两套W,b.每套再包含四套参数
concat = _linear([inputs, h], 4 * self._num_units, True, scope=scope) # i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1) new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
self._activation(j))
new_h = self._activation(new_c) * sigmoid(o) if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state
5. lstm层,每一batch的运算
with tf.variable_scope("RNN"):
for time_step in range(num_steps):
if time_step > 0: tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
6. 每一epoch
7.全部运算
tensorflow源码分析——BasicLSTMCell的更多相关文章
- tensorflow源码分析
前言: 一般来说,如果安装tensorflow主要目的是为了调试些小程序的话,只要下载相应的包,然后,直接使用pip install tensorflow即可. 但有时我们需要将Tensorflow的 ...
- tensorflow源码分析——LSTMCell
LSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py.LSTMCell 继承了RNN ...
- 图解tensorflow 源码分析
http://www.cnblogs.com/yao62995/p/5773578.html https://github.com/yao62995/tensorflow
- tensorflow源码分析——CTC
CTC是2006年的论文Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurren ...
- [tensorflow源码分析] Conv2d卷积运算 (前向计算,反向梯度计算)
- [图解tensorflow源码] 入门准备工作附常用的矩阵计算工具[转]
[图解tensorflow源码] 入门准备工作 附常用的矩阵计算工具[转] Link: https://www.cnblogs.com/yao62995/p/5773142.html tensorf ...
- [图解tensorflow源码] 入门准备工作
tensorflow使用了自动化构建工具bazel.脚本语言调用c或cpp的包裹工具swig.使用EIGEN作为矩阵处理工具.Nvidia-cuBLAS GPU加速计算库.结构化数据存储格式prot ...
- [图解tensorflow源码] [原创] Tensorflow 图解分析 (Session, Graph, Kernels, Devices)
TF Prepare [图解tensorflow源码] 入门准备工作 [图解tensorflow源码] TF系统概述篇 Session篇 [图解tensorflow源码] Session::Run() ...
- TensorFlow源码框架 杂记
一.为什么我们需要使用线程池技术(ThreadPool) 线程:采用“即时创建,即时销毁”策略,即接受请求后,创建一个新的线程,执行任务,完毕后,线程退出: 线程池:应用软件启动后,立即创建一定数量的 ...
随机推荐
- 测试使用Timer定时调用http接口
转自:https://blog.csdn.net/qq_36004521/article/details/80101881
- [LeetCode]1089. Duplicate Zeros
Given a fixed length array arr of integers, duplicate each occurrence of zero, shifting the remainin ...
- SokcetClient c++
#include "pch.h" #include "SokcetClient.h" #include <iostream> #include &l ...
- JavaMaven【六、生命周期】
Maven有三个独立的生命周期,每个生命周期都不会出发别的生命周期的操作 若直接执行生命周期后面的操作,maven会默认执行前面的操作 如项目创建好后,直接执行mvn install,会默认依次执行c ...
- python部署到服务器(2) 一一 nginx+uwsgi+Django
参考菜鸟教程,https://blog.csdn.net/qq_42314550/article/details/81805328, 和 https://www.cnblogs.com/chenice ...
- Delphi ActiveX编程
樊伟胜
- (备忘)Nginx中文手册(技术指南第二版)
Nginx 常见应用技术指南[Nginx Tips] 第二版 目 录 一. Nginx 基础知识二. Nginx 安装及调试三. Nginx Rewrite四. Nginx Redirect五. Ng ...
- 1-win10配置 Vagrant 环境
1-win10配置 Vagrant 环境 2019.9.13 Vagrant 概述 vagrant是一个操作虚拟机的工具.是一个基于Ruby的工具,用于创建和部署虚拟化开发环境. 通过命令和配置文件来 ...
- 十五,K8S集群调度原理及调度策略
目录 k8s调度器Scheduler Scheduler工作原理 请求及Scheduler调度步骤: k8s的调用工作方式 常用预选策略 常用优先函数 节点亲和性调度 节点硬亲和性 节点软亲和性 Po ...
- python函数:函数参数、对象、嵌套、闭包与名称空间、作用域
今天的内容整理共有5部分 一.命名关键字参数 二.函数对象 三.函数的嵌套 四.名称空间与作用域 五.闭包函数 一.命名关键字参数 # 命名关键字参数: 在定义函数时,*与**之间参数称之为命名关键字 ...