tensorflow源码分析——BasicLSTMCell
BasicLSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py。
BasicLSTMCell 继承了RNNCell,源码位于:/tensorflow/python/ops/rnn_cell_impl.py
注意事项:
1. input_size 这个参数不能使用,使用的是num_units
2. state_is_tuple 官方建议设置为True。此时,输入和输出的states为c(cell状态)和h(输出)的二元组
3. 输入、输出、cell的维度相同,都是 batch_size * num_units,
cell = tf.contrib.rnn.BasicLSTMCell(num_units, forget_bias=0.0, state_is_tuple=True) #指定num_units
_initial_state = cell.zero_state(batch_size, tf.float32) #指定batch_size,将c和h全部初始化为0,shape全是batch_size * num_units,
4.
class BasicLSTMCell(RNNCell):
"""Basic LSTM recurrent network cell. The implementation is based on: http://arxiv.org/abs/1409.2329. We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training. It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline. For advanced models, please use the full LSTMCell that follows.
""" def __init__(self, num_units, forget_bias=1.0, input_size=None,
state_is_tuple=True, activation=tanh):
"""Initialize the basic LSTM cell. Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
activation: Activation function of the inner states.
"""
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation @property
def state_size(self):
return (LSTMStateTuple(self._num_units, self._num_units)
if self._state_is_tuple else 2 * self._num_units) @property
def output_size(self):
return self._num_units def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with vs.variable_scope(scope or "basic_lstm_cell"):
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1) # 线性计算 concat = [inputs, h]W + b
# 线性计算,分配W和b,W的shape为(2*num_units, 4*num_units), b的shape为(4*num_units,),共包含有四套参数,
# concat shape(batch_size, 4*num_units)
# 注意:只有cell 的input和output的size相等时才可以这样计算,否则要定义两套W,b.每套再包含四套参数
concat = _linear([inputs, h], 4 * self._num_units, True, scope=scope) # i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1) new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
self._activation(j))
new_h = self._activation(new_c) * sigmoid(o) if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state
5. lstm层,每一batch的运算
with tf.variable_scope("RNN"):
for time_step in range(num_steps):
if time_step > 0: tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
6. 每一epoch
7.全部运算
tensorflow源码分析——BasicLSTMCell的更多相关文章
- tensorflow源码分析
前言: 一般来说,如果安装tensorflow主要目的是为了调试些小程序的话,只要下载相应的包,然后,直接使用pip install tensorflow即可. 但有时我们需要将Tensorflow的 ...
- tensorflow源码分析——LSTMCell
LSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py.LSTMCell 继承了RNN ...
- 图解tensorflow 源码分析
http://www.cnblogs.com/yao62995/p/5773578.html https://github.com/yao62995/tensorflow
- tensorflow源码分析——CTC
CTC是2006年的论文Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurren ...
- [tensorflow源码分析] Conv2d卷积运算 (前向计算,反向梯度计算)
- [图解tensorflow源码] 入门准备工作附常用的矩阵计算工具[转]
[图解tensorflow源码] 入门准备工作 附常用的矩阵计算工具[转] Link: https://www.cnblogs.com/yao62995/p/5773142.html tensorf ...
- [图解tensorflow源码] 入门准备工作
tensorflow使用了自动化构建工具bazel.脚本语言调用c或cpp的包裹工具swig.使用EIGEN作为矩阵处理工具.Nvidia-cuBLAS GPU加速计算库.结构化数据存储格式prot ...
- [图解tensorflow源码] [原创] Tensorflow 图解分析 (Session, Graph, Kernels, Devices)
TF Prepare [图解tensorflow源码] 入门准备工作 [图解tensorflow源码] TF系统概述篇 Session篇 [图解tensorflow源码] Session::Run() ...
- TensorFlow源码框架 杂记
一.为什么我们需要使用线程池技术(ThreadPool) 线程:采用“即时创建,即时销毁”策略,即接受请求后,创建一个新的线程,执行任务,完毕后,线程退出: 线程池:应用软件启动后,立即创建一定数量的 ...
随机推荐
- 通过Callable接口实现多线程
一.通过Callable接口实现多线程 c.实现Callable重写call方法 实现Callable和实现Runnable类似,但是功能更强大,具体表现在 a.可以在任务结束后提供一个返回值,Run ...
- 关于同一台服务器上两个PHP项目相互访问超时的问题
当一台服务器部署多个PHP项目,各自运行时并无干扰, 即使都使用 9000端口来跑php 但是有一种情况,当其中一个项目需要调用另一个php项目的接口时,便会超时,这是因为php是单线程的同步的 也许 ...
- 【Day2】2.函数
视频地址(全部) https://edu.csdn.net/course/detail/26057 课件地址(全部) https://download.csdn.net/download/gentl ...
- Delphi TIdUDPClient组件
- 基于Linux解决登录ssh客户端失败问题—sshd error: could not load host key
当你ssh远程登录时,会发现ssh登录界面刚打开就会闪退,在查看主机日志消息中,就会看到如下错误: 然而问题的根源也就是这三个文件,无法正常加载ssh主机密钥. 而我们只需要将有问题的文件删除,然后重 ...
- VM虚拟机下centos安装。
centOS 7安装步骤: 1.选择新建虚拟机,稍后安装,linux选centos7 64位 2.位置改到存放虚拟机的文件夹 3.把硬盘空间改到40g,内存分到4g,1处理器2个核心 4 更改cd/d ...
- python常用模块:pickle、shelve、json、xml、configparser
今日内容主要有: 一.pickle模块二.shelve模块三.json模块四.json练习五.xml模块 六.xml练习七.configparser模块 一.pickle模块 #pickle是一个用来 ...
- [AWS - EC2] 如何向 Amazon Linux 2 实例传输文件,下载文件。How to send/ download files from Amazon Linux 2 Instance
1. 需要: 安装 WinSCP 2. 需要: PuTTY 生成的ppk格式密钥, 没有的话请移步此文章,完成1, 2, 3步即可. 3. 打开 WinSCP , 如果提示已经有PuTTY配置是否导入 ...
- ios h5 长按时出现黑色透明遮罩
html,body{-webkit-text-size-adjust: 100%;-webkit-tap-highlight-color: rgba(0, 0, 0, 0);}
- (转) Oracle性能优化-读懂执行计划
Oracle的执行计划 得到执行计划的方式 Autotrace例子 使用Explain explain plan set STATEMENT_ID='testplan'for select * fro ...