题意

题解

orz Freopen的博客

CODE

#pragma GCC optimize (3)
#include <bits/stdc++.h>
using namespace std;
char cb[1<<15],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
void read(int &res){
char ch; for(;!isdigit(ch=getc()););
for(res=ch-'0';isdigit(ch=getc());res=res*10+ch-'0');
}
const int MAXD = 105;
const int MAXN = 1005;
const int mod = 1e9 + 7;
int d, n, p[MAXN], a[MAXN]; int inv[MAXD], invf[MAXD], rinv[MAXD];
int y[MAXD], cf[MAXD], dp[MAXD]; inline int qpow(int a, int b) {
int re = 1;
while(b) {
if(b&1) re = 1ll * re * a % mod;
a = 1ll * a * a % mod; b >>= 1;
}
return re;
} int main () {
read(d), read(n);
for(int i = 1; i <= n; ++i) read(p[i]), read(a[i]);
dp[0] = 1;
for(int i = 1; i <= d+2; ++i) {
y[i] = (y[i-1] + qpow(i, d)) % mod;
for(int j = d+2; j >= 0; --j)
dp[j] = ((j ? dp[j-1] : 0) - 1ll * dp[j] * i) % mod;
}
inv[0] = invf[0] = rinv[0] = 1;
inv[1] = invf[1] = 1; rinv[1] = -1;
for(int i = 2; i <= d+2; ++i)
inv[i] = 1ll * (mod - mod/i) * inv[mod%i] % mod,
invf[i] = 1ll * invf[i-1] * inv[i] % mod,
rinv[i] = 1ll * rinv[i-1] * (-inv[i]) % mod;
for(int i = 1; i <= d+2; ++i) {
for(int j = 0; j <= d+2; ++j) {
dp[j] = 1ll * ((j ? dp[j-1] : 0) - dp[j]) * inv[i] % mod;
cf[j] = (cf[j] + 1ll * dp[j] * invf[i-1] % mod * rinv[d+2-i] % mod * y[i]) % mod;
}
for(int j = d+2; j >= 0; --j)
dp[j] = ((j ? dp[j-1] : 0) - 1ll * dp[j] * i % mod) % mod;
}
int ans = 0;
for(int i = 0; i <= d+1; ++i) {
int tmp = 1;
for(int j = 1; j <= n; ++j)
tmp = 1ll * tmp * (qpow(qpow(p[j], a[j]), i) - 1ll * qpow(p[j], d) * qpow(qpow(p[j], a[j]-1), i) % mod) % mod;
ans = (ans + 1ll * tmp * cf[i] % mod) % mod;
}
printf("%d\n", (ans + mod) % mod);
}

BZOJ 3601 一个人的数论 (拉格朗日插值+莫比乌斯反演)的更多相关文章

  1. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  2. BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记

    BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...

  3. 【BZOJ】3453: tyvj 1858 XLkxc 拉格朗日插值(自然数幂和)

    [题意]给定k<=123,a,n,d<=10^9,求: $$f(n)=\sum_{i=0}^{n}\sum_{j=1}^{a+id}\sum_{x=1}^{j}x^k$$ [算法]拉格朗日 ...

  4. bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...

  5. BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...

  6. BZOJ 3601: 一个人的数论

    题目链接:www.lydsy.com/JudgeOnline/problem.php?id=3601 题意: 思路: 因此可以用高斯消元得到ai. const int mod=1000000007; ...

  7. BZOJ 3601 一个人的数论 ——莫比乌斯反演 高斯消元

    http://www.cnblogs.com/jianglangcaijin/p/4033399.html ——lych_cys 我还是太菜了,考虑一个函数的值得时候,首先考虑是否积性函数,不行的话就 ...

  8. 牛客Wannafly挑战赛23F 计数(循环卷积+拉格朗日插值/单位根反演)

    传送门 直接的想法就是设 \(x^k\) 为边权,矩阵树定理一波后取出 \(x^{nk}\) 的系数即可 也就是求出模 \(x^k\) 意义下的循环卷积的常数项 考虑插值出最后多项式,类比 \(DFT ...

  9. BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演

    原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...

随机推荐

  1. FZU2018级算法第五次作业 missile(排序+枚举)

    在解题报告之前,首先对同一次作业中另外一题(求逆序对)某人在未经冰少允许情况下,擅自登录冰少账号,原模原样剽窃冰少代码,并且最终还被评为优秀作业的行为表示严正抗议! 题目大意: 二维平面上给出 n 个 ...

  2. Django 在admin中自定义app名

    前提条件,注册时是: 完整的注册,不是直接用app名进行注册 INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'dj ...

  3. Missing android.support.FILE_PROVIDER_PATHS meta-data 报错原因分析

    此类错误多半因为拼写错误导致.有StackOverflow上便有网友将"FILE_PROVIDER_PATHS"误写成"FILE_PROVIDE_PATHS"的 ...

  4. 剪贴板神器:Ditto

    ditto – 善用佳软 免费开源的 Windows 管理剪贴板,让你处理文字更高效:Ditto - 少数派

  5. 血小板 live2d web使用

    关于此插件 看到一个很多网站都有动态的小人,目前除了即将废弃的flash就是canvas和h5动画了,h5动画能力有限,不能画出复杂的效果 那么canvas就是首选,全部手画也不可能,大部分使用库和工 ...

  6. vue cli3 项目优化

    vue-cli3 Prefetch (官网内容) <link rel="prefetch"> 是一种 resource hint,用来告诉浏览器在页面加载完成后,利用空 ...

  7. 天梯赛 L2-023. 图着色问题

    题解:用dfs遍历图的每条边就好,这里注意要求颜色的个数为k #include <cstdio> #include <iostream> #include <cstrin ...

  8. openstack-neutron(2)

    VXLAN 独立于底层的网络拓扑:反过来,两个 VTEP 之间的底层 IP 网络也独立于 VXLAN.VXLAN 数据包是根据外层的 IP header 路由的,该 header 将两端的 VTEP ...

  9. Ubuntu安装opencv3.4.4教程

    1 去官网下载opencv 在本教程中选用的是opencv3.4.4,下载链接 http://opencv.org/releases.html ,选择sources. 2 解压 unzip openc ...

  10. H5 新增标签canvas 画布

    canvas是写在body中的标签,设置宽高后,通过JS来往其中绘制想要的内容, canvas可以理解为一个画板,而JS就是你的画笔. 1.获取到画布 var canvas = document.ge ...