和前几天做的AC自动机类似。

  思路简单但是代码200余行。。

  假设solve_sub(i)表示长度为i的不含危险单词的总数。

  最终答案为用总数(26^1+26^2+...+26^n)减去(solve_sub(1)+solve_sub(2)+...+solve_sub(n))。前者构造f[i]=f[i-1]*26+26然后矩阵快速幂即可(当然也可以分治的方法)。后者即构造出dp矩阵p,然后计算(p^1+p^2+...+p^n),对其分治即可。

  代码如下:

 #include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
#include <queue>
#include <iostream>
using namespace std;
const int MAX_Tot = + ;
const int mod = ;
typedef unsigned long long ull; int m,n; struct matrix
{
ull e[MAX_Tot][MAX_Tot];
int n,m;
matrix() {}
matrix(int _n,int _m): n(_n),m(_m) {memset(e,,sizeof(e));}
matrix operator * (const matrix &temp)const
{
matrix ret = matrix(n,temp.m);
for(int i=;i<=ret.n;i++)
{
for(int j=;j<=ret.m;j++)
{
for(int k=;k<=m;k++)
{
ret.e[i][j] += e[i][k]*temp.e[k][j];
}
}
}
return ret;
}
matrix operator + (const matrix &temp)const
{
matrix ret = matrix(n,m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
ret.e[i][j] += e[i][j]+temp.e[i][j];
}
}
return ret;
}
void getE()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
e[i][j] = i==j?:;
}
}
}
}; matrix qpow(matrix temp,int x)
{
int sz = temp.n;
matrix base = matrix(sz,sz);
base.getE();
while(x)
{
if(x & ) base = base * temp;
x >>= ;
temp = temp * temp;
}
return base;
} matrix solve(matrix a, int k)
{
if(k == ) return a;
int n = a.n;
matrix temp = matrix(n,n);
temp.getE();
if(k & )
{
matrix ex = qpow(a,k);
k--;
temp = temp + qpow(a,k/);
return temp * solve(a,k/) + ex;
}
else
{
temp = temp + qpow(a,k/);
return temp * solve(a,k/);
}
} struct Aho
{
struct state
{
int nxt[];
int fail,cnt;
}stateTable[MAX_Tot]; int size; queue<int> que; void init()
{
while(que.size()) que.pop();
for(int i=;i<MAX_Tot;i++)
{
memset(stateTable[i].nxt,,sizeof(stateTable[i].nxt));
stateTable[i].fail = stateTable[i].cnt = ;
}
size = ;
} void insert(char *s)
{
int n = strlen(s);
int now = ;
for(int i=;i<n;i++)
{
char c = s[i];
if(!stateTable[now].nxt[c-'a'])
stateTable[now].nxt[c-'a'] = size++;
now = stateTable[now].nxt[c-'a'];
}
stateTable[now].cnt = ;
} void build()
{
stateTable[].fail = -;
que.push(); while(que.size())
{
int u = que.front();que.pop();
for(int i=;i<;i++)
{
if(stateTable[u].nxt[i])
{
if(u == ) stateTable[stateTable[u].nxt[i]].fail = ;
else
{
int v = stateTable[u].fail;
while(v != -)
{
if(stateTable[v].nxt[i])
{
stateTable[stateTable[u].nxt[i]].fail = stateTable[v].nxt[i];
// 在匹配fail指针的时候顺便更新cnt
if(stateTable[stateTable[stateTable[u].nxt[i]].fail].cnt == )
stateTable[stateTable[u].nxt[i]].cnt = ;
break;
}
v = stateTable[v].fail;
}
if(v == -) stateTable[stateTable[u].nxt[i]].fail = ;
}
que.push(stateTable[u].nxt[i]);
}
/*****建立自动机nxt指针*****/
else
{
if(u == ) stateTable[u].nxt[i] = ;
else
{
int p = stateTable[u].fail;
while(p != - && stateTable[p].nxt[i] == ) p = stateTable[p].fail;
if(p == -) stateTable[u].nxt[i] = ;
else stateTable[u].nxt[i] = stateTable[p].nxt[i];
}
}
/*****建立自动机nxt指针*****/
}
}
} matrix build_matrix()
{
matrix ans = matrix(size,size);
for(int i=;i<size;i++)
{
for(int j=;j<;j++)
{
if(!stateTable[i].cnt && !stateTable[stateTable[i].nxt[j]].cnt)
ans.e[i+][stateTable[i].nxt[j]+]++;
}
}
return ans;
}
}aho; void print(matrix p)
{
int n = p.n;
int m = p.m;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
printf("%d ",p.e[i][j]);
}
puts("");
}
} int main()
{
while(scanf("%d%d",&m,&n) == )
{
aho.init();
char s[];
for(int i=;i<=m;i++)
{
scanf("%s",s);
aho.insert(s);
}
aho.build();
matrix p = aho.build_matrix();
p = solve(p,n);
ull temp = ;
for(int i=;i<=aho.size;i++) temp += p.e[][i];
matrix t = matrix(,);
t.e[][] = ;
matrix A = matrix(,);
A.e[][] = A.e[][] = ; A.e[][] = ;
t = t * qpow(A,n);
ull ans = t.e[][] - temp;
printf("%llu\n",ans);
}
return ;
}

  最后觉得,,我之前矩阵模板里的print()真好用啊233= =。

HDU 2243 考研路茫茫――单词情结 ——(AC自动机+矩阵快速幂)的更多相关文章

  1. hdu 2243 考研路茫茫——单词情结 ac自动机+矩阵快速幂

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意:给定N(1<= N < 6)个长度不超过5的词根,问长度不超过L(L <23 ...

  2. HDU 2243 考研路茫茫——单词情结(AC自动机+DP+快速幂)

    题目链接 错的上头了... 这题是DNA的加强版,26^1 +26^2... - A^1-A^2... 先去学了矩阵的等比数列求和,学的是第二种方法,扩大矩阵的方法.剩下就是各种模板,各种套. #in ...

  3. hdu 2243 考研路茫茫——单词情结 AC自动机 矩阵幂次求和

    题目链接 题意 给定\(N\)个词根,每个长度不超过\(5\). 问长度不超过\(L(L\lt 2^{31})\),只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个? 思路 状态(AC自动 ...

  4. [hdu2243]考研路茫茫——单词情结(AC自动机+矩阵快速幂)

    题意:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个. 解题关键:利用补集转化的思想,先求一个词根也不包含的单词个数,然后用总的减去即可.长度不超过L需要用矩阵维数增加一倍 ...

  5. hdu 2243 考研路茫茫——单词情结(AC自动+矩阵)

    考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. hdu_2243_考研路茫茫——单词情结(AC自动机+矩阵)

    题目链接:hdu_2243_考研路茫茫——单词情结 题意: 让你求包含这些模式串并且长度不小于L的单词种类 题解: 这题是poj2788的升级版,没做过的强烈建议先做那题. 我们用poj2778的方法 ...

  7. HDU 2243 考研路茫茫——单词情结(AC自动机+矩阵)

    考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  8. HDU 2243 考研路茫茫——单词情结

    考研路茫茫——单词情结 Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID ...

  9. HDU 2243 考研路茫茫——单词情结 求长度小于等于L的通路总数的方法

    http://acm.hdu.edu.cn/showproblem.php?pid=2243 这是一题AC自动机 + 矩阵快速幂的题目, 首先知道总答案应该是26^1 + 26^2 + 26^3 .. ...

  10. HDU2243 考研路茫茫——单词情结 ——AC自动机、矩阵优化

    题目链接:https://vjudge.net/problem/HDU-2243 考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others)    Memor ...

随机推荐

  1. Java Web-JSTL

    Java Web-JSTL 概念 Java Server Pages Tag Library:JSP标准标签库 是由Apache组织提供的开源.免费JSP标签 用于简化和替换JSP页面上的Java代码 ...

  2. 基于【 centos7】三 || 分布式文件系统FastDFS+Nginx环境搭建

    1. FastDFS介绍 1.1 FastDFS定义 FastDFS是用c语言编写的一款开源的分布式文件系统.FastDFS为互联网量身定制,充分考虑了冗余备份.负载均衡.线性扩容等机制,并注重高可用 ...

  3. css之弹性盒模型

    弹性盒子(Flexible Box/filebox)是一种当页面需要适应不同的屏幕大小以及设备类型时确保元素拥有恰当的行为的布局方式.引入弹性盒布局模型的目的是提供一种更加有效的方式来对一个容器中的子 ...

  4. jQuery组件封装之return this.each(function () {});

    记录一下自己的调试历程 组件封装经常看到这么一段代码 $.fn.plugin = function (options) { return this.each(function (i,t) { new ...

  5. 解决spring-boot-maven-plugin插件打包,springboot启动时报找不到主main问题

    一:遇到的问题及解决方法 最近在搭建一个新项目时,使用spring-boot-maven-plugin插件打包,springboot项目在发布后启动时遇到找不到主main问题. 遇到这个问题当时感觉本 ...

  6. httpd-2.4源码编译

    APR     APR(Apache portable Run-time libraries,Apache可移植运行库) 主要为上层的应用程序提供一个可以跨越多操作系统平台使用的底层支持接口库.在早 ...

  7. 【Spring】源码浅析 - ResponseEntity.ok 转载

    https://www.jianshu.com/p/1238bfb29ee1 ResponseEntity.ok具体源码

  8. 【Jenkins】修改Ubuntu下的jenkins端口号

    jenkins安装目录:/var/lib/jenkins jenkins日志目录:/var/log/jenkins/jenkins.logjenkins默认配置:/etc/default/jenkin ...

  9. MySQL进阶 9: 联合查询 - 查询语句1 union 查询语句2 union ...

    #进阶 : 联合查询 /* union 联合 合并: 将多条查询语句的结果合并成一个结果 语法: 查询语句1 union 查询语句2 union ... 应用语境: 要查询的结果来自多个表,但查询的列 ...

  10. HBuilderX 5+APP MUI 入门

    这一套东西是用来开发app的,可以用html.js什么的写app然后给你打包就能安装到手机上,也可以轻易跨端(需要使用vue,然而我还没有熟练). HBuilder:一个敲代码的软件,敲前端代码超级方 ...