tourist's modular arithmetic class
#include <bits/stdc++.h>
using namespace std;
template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
return v;
}
const Type& operator()() const { return value; }
template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
Modular& operator++() { return *this += 1; }
Modular& operator--() { return *this -= 1; }
Modular operator++(int) { Modular result(*this); *this += 1; return result; }
Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
Modular operator-() const { return Modular(-value); }
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
#ifdef _WIN32
uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
asm(
"divl %4; \n\t"
: "=a" (d), "=d" (m)
: "d" (xh), "a" (xl), "r" (mod())
);
value = m;
#else
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
return *this;
}
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int64_t>::value, Modular>::type& operator*=(const Modular& rhs) {
int64_t q = static_cast<int64_t>(static_cast<long double>(value) * rhs.value / mod());
value = normalize(value * rhs.value - q * mod());
return *this;
}
template <typename U = T>
typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(value * rhs.value);
return *this;
}
Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
template <typename U>
friend const Modular<U>& abs(const Modular<U>& v) { return v; }
template <typename U>
friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename U>
friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename U>
friend std::istream& operator>>(std::istream& stream, Modular<U>& number);
private:
Type value;
};
template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }
template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }
template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template<typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
assert(b >= 0);
Modular<T> x = a, res = 1;
U p = b;
while (p > 0) {
if (p & 1) res *= x;
x *= x;
p >>= 1;
}
return res;
}
template <typename T>
bool IsZero(const Modular<T>& number) {
return number() == 0;
}
template <typename T>
string to_string(const Modular<T>& number) {
return to_string(number());
}
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Modular<T>& number) {
return stream << number();
}
template <typename T>
std::istream& operator>>(std::istream& stream, Modular<T>& number) {
typename common_type<typename Modular<T>::Type, int64_t>::type x;
stream >> x;
number.value = Modular<T>::normalize(x);
return stream;
}
/*
using ModType = int;
struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;
*/
constexpr int md = 998244353;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;
tourist's modular arithmetic class的更多相关文章
- Modular Arithmetic ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Introduction Modular arithmetic is a fundamental tool in modern algebra systems. In conjunction wi ...
- Modular arithmetic and Montgomery form 实现快速模乘
题目: 电音之王 题解: 求数列前n项相乘并取模 思路: ①.这题的乘法是爆long long的,可以通过快速幂的思想去解决(按数位对其中的一个数进行剖分).当然你的乘法会多出一个log的复杂度... ...
- I am Nexus Master!(虽然只是个模拟题。。。但仍想了很久!)
I am Nexus Master! The 13th Zhejiang University Programming Contest 参见:http://www.bnuoj.com/bnuoj/p ...
- UESTC 1852 Traveling Cellsperson
找规律水题... Traveling Cellsperson Time Limit: 1000ms Memory Limit: 65535KB This problem will be judged ...
- UESTC 1851 Kings on a Chessboard
状压DP... Kings on a Chessboard Time Limit: 10000ms Memory Limit: 65535KB This problem will be judged ...
- SPOJ 375. Query on a tree (树链剖分)
Query on a tree Time Limit: 5000ms Memory Limit: 262144KB This problem will be judged on SPOJ. Ori ...
- Robots on a grid(DP+bfs())
链接:http://www.bnuoj.com/bnuoj/problem_show.php?pid=25585 Current Server Time: 2013-08-27 20:42:26 Ro ...
- An Introduction to Interactive Programming in Python (Part 1) -- Week 2_3 练习
Mini-project description - Rock-paper-scissors-lizard-Spock Rock-paper-scissors is a hand game that ...
- Cellphone Typing 字典树
Cellphone Typing Time Limit: 5000ms Memory Limit: 131072KB This problem will be judged on UVA. Ori ...
随机推荐
- 灰度图像--图像分割 阈值处理之P-Tile阈值
学习DIP第53天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:http ...
- sh_21_遍历字典的列表
sh_21_遍历字典的列表 students = [ {"name": "阿土"}, {"name": "小美"} ] ...
- reactjs 项目使用 iconfont 小图标以及使用带颜色 inconfont 小图标
在 reactjs 项目中是所有小图标目前主要分为两类使用方式,第一类通过 CSS 引入的方式使用,第二类使用 JS 的方式引入使用. 注册-登录-建立项目-选中图标添加到购物车-添加至项目-下载到本 ...
- 一个服务器的Apache2.4.6配置多个域名
进入到Apache的配置文件:cd /etc/httpd/conf/http.conf 在后面添加: <VirtualHost *:80> # This first-listed virt ...
- leetcode题目4.寻找两个有序数组的中位数(困难)
题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 ...
- Mac平台最好用的万能开源免费播放器-IINA
1.安装 1)官网下载地址 https://iina.io/ 2)brew 方式安装 testdeMacBook-Pro:~ test$ brew cask install iina Updating ...
- Android 获取Bitmap方式
1.获得当前项目资源文件(assets)下图片 (1).获得图片数据流 private Bitmap getBotMapInfo() { Bitmap bitmap = null; try { Inp ...
- vue——父组件向子组件传递数据
看例子: //注册一个全局组件,组件标签名为child Vue.component('child', { props: ['msg'], //接收父组件传递的数据 template: '<h3& ...
- VisualVM通过ssl远程连接JVM
VisualVM通过密码连接JVM实例如下 https://www.cnblogs.com/qq931399960/p/10960573.html 虽然设置了密码,但还是不够安全,只要获取到密码,在任 ...
- JS遍历OCX方法
/----查看OCX组件的属性 <html> <head> <title>OCX</title> <meta http-equiv="C ...