noip模拟测试30
考试总结:这次考试,不是很顺利,首先看了一眼题目,觉得先做T1,想了一会觉得没什么好思路,就去打暴力,结果我不会枚举子集,码了半天发现不对,就随便交了一份代码上去,结果CE了,然后去打T3,20min打了个暴搜,结果最后全TLE,T2读了10多分钟才理解题义,但是没什么时间码了,就把T1的程序该了该交了,也不对,最后保龄了......
T1 毛一琛
思路:这题正解就是个暴搜,加上一个meet in the middle ,首先,我在考场上想到的是枚举子集,但是问题就是复杂度太高,而题解中运用到了一个状压的思想,在暴搜的过程中存储当前选择的数和当前的和,这样就可以很容易地找到所有的情况,同时,利用一个meet in the middle的思想,采用折半搜索,将前半段信息存储起来,用后半段去匹配。注意的是,暴搜的过程中要搜索三种情况,代码片段如下:
iv dfs1(int x,int w)
{
if(x>n/2)
{
int zz=0;
for(re i=1;i<=n/2;i++)
zz=(zz<<1)|v[i];
T.insert(zz,w);
return;
}
v[x]=0,dfs1(x+1,w);//situation 1
v[x]=1,dfs1(x+1,w+a[x]);//situation 2
v[x]=1,dfs1(x+1,w-a[x]);//situation 3
}
前两种情况很好理解,对于第三种情况,首先明确一个事情就是我们保存前半段信息,利用后半段去匹配,但是当前半段区间内部出现合法方案时,我们就要利用这第三个,因为当两边差值相同的时候必定是一种合法情况。代码如下:
AC_Code
#include<bits/stdc++.h>
#define re register int
#define ii inline int
#define iv inline void
#define next neeet
#define head heeead
using namespace std;
const int N=3e8+20;
const int M=3e5+10;
bool vis[1030][1030];
unordered_map<int,int>head;
int to[M],next[M],val[M];
int n,tot,ans;
int a[30],v[30];
ii read()
{
int x=0;
bool f=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')
f=0;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return f?x:(-x);
}
struct Segment_cz
{
iv insert(int zz,int w)
{
int key=w;
for(re i=head[key];i;i=next[i])
{
int p=to[i];
if(p==zz&&val[i]==w)
return;
}
to[++tot]=zz;
val[tot]=w;
next[tot]=head[key];
head[key]=tot;
}
iv query(int zz,int w)
{
int key=w;
for(re i=head[key];i;i=next[i])
{
if(val[i]==w&&(!vis[to[i]][zz]))
{
++ans;
vis[to[i]][zz]=1;
}
}
return;
}
}T;
iv dfs1(int x,int w)
{
if(x>n/2)
{
int zz=0;
for(re i=1;i<=n/2;i++)
zz=(zz<<1)|v[i];
T.insert(zz,w);
return;
}
v[x]=0,dfs1(x+1,w);
v[x]=1,dfs1(x+1,w+a[x]);
v[x]=1,dfs1(x+1,w-a[x]);
}
iv dfs2(int x,int w)
{
if(x>n)
{
int zz=0;
for(re i=n/2+1;i<=n;i++)
zz=zz<<1|v[i];
T.query(zz,w);
return;
}
v[x]=0,dfs2(x+1,w);
v[x]=1,dfs2(x+1,w+a[x]);
v[x]=1,dfs2(x+1,w-a[x]);
}
signed main()
{
n=read();
for(re i=1;i<=n;i++)
a[i]=read();
dfs1(1,0);
dfs2(n/2+1,0);
printf("%d",ans-1);
return 0;
}
noip模拟测试30的更多相关文章
- [NOIP模拟测试30]题解
A.Return 出题人大概是怕自己的中文十级没人知道,所以写了这么一个***题面.可能又觉得这题太水怕全场A掉后自己面子过不去,于是又故意把输出格式说的含糊不清.(鬼知道"那么输出-1&q ...
- NOIP模拟测试30「return·one·magic」
magic 题解 首先原式指数肯定会爆$long$ $long$ 首先根据欧拉定理我们可以将原式换成$N^{\sum\limits_{i=1}^{i<=N} [gcd(i,N)==1] C_{G ...
- 「题解」NOIP模拟测试题解乱写II(36)
毕竟考得太频繁了于是不可能每次考试都写题解.(我解释个什么劲啊又没有人看) 甚至有的题目都没有改掉.跑过来写题解一方面是总结,另一方面也是放松了. NOIP模拟测试36 T1字符 这题我完全懵逼了.就 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 C. 分组
2019.8.3 [HZOI]NOIP模拟测试12 C. 分组 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 刚看这题觉得很难,于是数据点分治 k只有1和2两种,分别 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色
2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 数据结构学傻的做法: 对每种颜色开动态开点线段树直接维 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci)
2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci) 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 找规律 找两个节点的lca,需 ...
- NOIP模拟测试17&18
NOIP模拟测试17&18 17-T1 给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是? 特判比值为1的情况,预处理比值2~1000的 ...
- 「题解」NOIP模拟测试题解乱写I(29-31)
NOIP模拟29(B) T1爬山 简单题,赛时找到了$O(1)$查询的规律于是切了. 从倍增LCA那里借鉴了一点东西:先将a.b抬到同一高度,然后再一起往上爬.所用的步数$×2$就是了. 抬升到同一高 ...
- 2019.7.29 NOIP模拟测试10 反思总结【T2补全】
这次意外考得不错…但是并没有太多厉害的地方,因为我只是打满了暴力[还没去推T3] 第一题折腾了一个小时,看了看时间先去写第二题了.第二题尝试了半天还是只写了三十分的暴力,然后看到第三题是期望,本能排斥 ...
随机推荐
- org.junit.Assert(断言)
org.junit.Assert(断言) Assert是断言的意思,可以理解为"猜测",如果猜测错误,则抛出java.lang.AssertionError异常. 引入jar包 ...
- 使用echarts时,鼠标首次移入屏幕会闪动,全屏会出现滚动条
原因: 在echarts图表中出现tooltip时,画布的父标签(即:echarts.init()的标签)的有时宽高都会发生变化,导致相对布局的div可能大小发生变化(画布大小却不变),导致页面闪动. ...
- Fiber 树的构建
我们先来看一个简单的 demo: import * as React from 'react'; import * as ReactDOM from 'react-dom'; class App ex ...
- python读取csv文件数据绘制图像,例子绘制天气每天最高最低气温气象图
- CAS你知道吗?底层如何实现?ABA问题又是什么?关于这些你知道答案吗
CAS你知道吗?如何实现? 1. compareAndSet 在volatile当中我们提到,volatile不能保证原子语义,所以当用到变量自增时,如果用到synchronized会太"重 ...
- buu SCTF Who is he
1. 下载好附件,发现是unity的题目,找到assembly.dll,用dnspy直接打开干,在引用下面就是实际的代码 2.找到了核心代码,发现逻辑也挺简单的, 输入的text,要和一串字符串进行b ...
- 重置networker8.0密码
一.重置Networker 8.0密码 1.设置环境变量 新建一个"系统环境变量"名字为"GST_RESET_PW",值为1 2.重启EMC GST Servi ...
- CDN相关知识及CDN绕过
#什么是CDN? 内容分发网络(Content Delivery Network,简称CDN)是建立并覆盖在承载网之上,由分布在不同区域的边缘节点服务器群组成的分布式网络.CDN应用广泛,支持多种行业 ...
- 1.前言-聊聊Java这条路
一.解决大家的疑问 1.零基础学习编程? 有编程基础的比零基础的困难,毕竟有一些固定思维 目标:爱好.做网站.做游戏 2.英语不好能学吗? 程序并没有大家想象的那么多英语,天天都在用,慢慢就掌握了 3 ...
- STP概述简介及生成树算法
目录: STP概述 STP简介 生成树算法 选择根网桥 选择根端口 选择指定端口 BPDU(桥协议数据单元) STP利用BPDU选择根网桥 STP的收敛 VLAN与STP关系 MSTP多生成树协议华为 ...