Interviewe

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6689    Accepted Submission(s): 1582

Problem Description
YaoYao has a company and he wants to employ m people recently. Since his company is so famous, there are n people coming for the interview. However, YaoYao is so busy that he has no time to interview them by himself. So he decides to select exact m interviewers for this task.
YaoYao decides to make the interview as follows. First he queues the interviewees according to their coming order. Then he cuts the queue into m segments. The length of each segment is , which means he ignores the rest interviewees (poor guys because they comes late). Then, each segment is assigned to an interviewer and the interviewer chooses the best one from them as the employee.
YaoYao’s idea seems to be wonderful, but he meets another problem. He values the ability of the ith arrived interviewee as a number from 0 to 1000. Of course, the better one is, the higher ability value one has. He wants his employees good enough, so the sum of the ability values of his employees must exceed his target k (exceed means strictly large than). On the other hand, he wants to employ as less people as possible because of the high salary nowadays. Could you help him to find the smallest m?
 
Input
The input consists of multiple cases.
In the first line of each case, there are two numbers n and k, indicating the number of the original people and the sum of the ability values of employees YaoYao wants to hire (n≤200000, k≤1000000000). In the second line, there are n numbers v1, v2, …, vn (each number is between 0 and 1000), indicating the ability value of each arrived interviewee respectively.
The input ends up with two negative numbers, which should not be processed as a case.
 
Output
For each test case, print only one number indicating the smallest m you can find. If you can’t find any, output -1 instead.
 
Sample Input
11 300
7 100 7 101 100 100 9 100 100 110 110
-1 -1
 
Sample Output
3

Hint

We need 3 interviewers to help YaoYao. The first one interviews people from 1 to 3, the second interviews people from 4 to 6,
and the third interviews people from 7 to 9. And the people left will be ignored. And the total value you can get is 100+101+100=301>300.

思路:RMQ;
先RMQ处理好区间最大值,首先(sqrt(n))枚举分成多少组,然后O(n)检测,这个时候再考虑每组多少人,我们可以知道枚举多少组的时候,我们把每组(sqrt(n),n)都能包括进去,那后就剩每组[1,sqrt(n)-1]的人这种没处理,然后再[1,sqrt(n)]枚举每组的多少人,然后检验,但这个检验的时候要遵循,最小的原则;比如 12 6
111111111111,是5,然么当每组取两个的时候,只要到第5组就可以了,因为12/5=2,12/6=2;复杂度(n×sqrt(n));
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<deque>
7 #include<stack>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 int ans[200005];
12 void RMQ(int n);
13 int mnsum[200005][22];
14 int mm[200005];
15 int rmq(int x, int y);
16 int check(int n,int k,int s);
17 int main(void)
18 {
19 int n;
20 int k;
21 while(scanf("%d %d",&n,&k),n>0&&k>0)
22 {
23 int i;
24 int sum = 0;
25 int minn = -1;
26 for(i = 1; i <= n; i++)
27 {
28 scanf("%d",&ans[i]);
29 sum += ans[i];
30 }
31 if(sum <= k)printf("-1\n");
32 else
33 {
34 RMQ(n);
35 for(i = 1; i <= sqrt(1.0*n); i++)
36 {
37 int x = n/i;
38 int xx = check(n,x,k);
39 if(xx!=-1)
40 {
41 minn = xx;
42 break;
43 }
44 }
45 if(minn == -1)
46 {
47 int y = n/(sqrt(1.0*n))-1;
48 for(i = y; i >= 1; i--)
49 {
50 int xx = check(n,i,k);
51 if(xx!=-1)
52 {
53 minn = xx;
54 break;
55 }
56 }
57 }
58 printf("%d\n",minn);
59 }
60 }
61 return 0;
62 }
63 void RMQ(int n)
64 {
65 mm[0] = -1;
66 for(int i = 1; i<=n; i++)
67 {
68 mm[i] = ((i&(i-1)) == 0) ? mm[i-1]+1:mm[i-1];
69 mnsum[i][0] = ans[i];
70 }
71 for(int j = 1; j<=mm[n]; j++)
72 for(int i = 1; i+(1<<j)-1<=n; i++)
73 mnsum[i][j] = max(mnsum[i][j-1], mnsum[i+(1<<(j-1))][j-1]);
74 }
75 int rmq(int x, int y)
76 {
77 int k = mm[y-x+1];
78 return max(mnsum[x][k], mnsum[y-(1<<k)+1][k]);
79 }
80 int check(int n,int k,int s)
81 { //if(k==1)printf("1\n");
82 int sum = 0;
83 int i;
84 int cnt = 0;
85 for(i = 1; i+k-1<= n; i+=k)
86 {
87 cnt++;
88 sum += rmq(i,i+k-1);
89 if(sum > s)return cnt;//最小原则;
90 }
91 return -1;
92 }

Interviewe(hdu3486)的更多相关文章

  1. *HDU3486 RMQ+二分

    Interviewe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  2. HDOJ 3486 Interviewe

    人生中第一次写RMQ....一看就知道 RMQ+2分但是题目文不对题....不知道到底在问什么东西....各种WA,TLE,,RE...后就过了果然无论错成什么样都可以过的,就是 上层的样例 啊  I ...

  3. Interviewe

    Interviewe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  4. hdu 3486 Interviewe (RMQ+二分)

    Interviewe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  5. HDU 3486 Interviewe

    题目大意:给定n个数的序列,让我们找前面k个区间的最大值之和,每个区间长度为n/k,如果有剩余的区间长度不足n/k则无视之.现在让我们找最小的k使得和严格大于m. 题解:二分k,然后求RMQ检验. S ...

  6. hdu3486 ST表区间最值+二分

    还是挺简单的,但是区间处理的时候要注意一下 #include<iostream> #include<cstring> #include<cstdio> #inclu ...

  7. Interviewe HDU - 3486( 暴力rmq)

    面试n个人,可以分任意组数,每组选一个,得分总和严格大于k,问最少分几组 就是暴力嘛...想到就去写吧.. #include <iostream> #include <cstdio& ...

  8. HDU 3486 Interviewe RMQ

    题意: 将\(n\)个数分成\(m\)段相邻区间,每段区间的长度为\(\left \lfloor \frac{n}{m} \right \rfloor\),从每段区间选一个最大值,要让所有的最大值之和 ...

  9. hdu 3484 Interviewe RMQ+二分

    #include <cstdio> #include <iostream> #include <algorithm> using namespace std; + ...

随机推荐

  1. 阿里云ECS磁盘性能测试

    阿里官方给出的性能指标 顺序读 测试命令 fio -directory=/var/lib/data -direct=1 -iodepth=1 -thread -ioengine=libaio -ran ...

  2. 使用clion阅读eos源码

    配置mingw 安装clion 从github克隆源码 使用clion open打开 在cmake上使用boost: sudo apt-get install libboost-all-dev

  3. 并发 并行 进程 线程 协程 异步I/O python async

    一些草率不精确的观点: 并发: 一起发生,occurence: sth that happens. 并行: 同时处理. parallel lines: 平行线.thread.join()之前是啥?落霞 ...

  4. [Emlog主题] Monkey V3.0 优化修改

    原作者博客:https://blog.dyboy.cn/ Monkey V3.0 优化修改版 修改说明: 背景颜色修改(按个人喜好可自行修改,仿PCQQ午夜巴黎皮肤) 搜索框按钮样式优化,不那么突兀了 ...

  5. 分类模型性能的评判方法-ROC分析

    一.混淆矩阵 二.引入ROC曲线 如上第一幅图,蓝色高斯表示真实值为阴性,红色高斯表示真实值为阳性.A,B,C代表不同的阈值,阈值线左边表示预测值为阴性,阈值线右边表示预测值为阳性.阈值从A到C,由此 ...

  6. Android项目的settings.gradle和build.gradle

    gradle构建的项目中的build.gradle和settings.gradle文件 build.gradle 浅析(一) 史上最全的Android build.gradle配置教程 Android ...

  7. Linux FTP的主动模式与被动模式

    Linux FTP的主动模式与被动模式 一.FTP主被动模式        FTP是文件传输协议的简称,ftp传输协议有着众多的优点所以传输文件时使用ftp协议的软件很多,ftp协议使用的端口是21( ...

  8. HTML样式 背景

    当浏览器读到一个样式表,就会按照这个格式表来对文档进行格式化.有以下三种方式来插入样式表: 1.外部样式表 当样式需要用到很多页面的时候,外部样式是理想的选择.使用外部样式表,就可以听过更改一个文件来 ...

  9. Linux:awk与cut命令的区别

    结论:awk 以空格为分割域时,是以单个或多个连续的空格为分隔符的;cut则是以单个空格作为分隔符.

  10. Linux(CentOS 7)使用gcc编译c,c++代码

    安装gcc: 1.使用 yum -list gcc* 查询 centos 官方gcc的所有包: 可安装的软件包 gcc.x86_64 gcc-c++.x86_64 gcc-gfortran.x86_6 ...