主角torch.nn.LSTM()

初始化时要传入的参数

 |  Args:
| input_size: The number of expected features in the input `x`
| hidden_size: The number of features in the hidden state `h`
| num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
| would mean stacking two LSTMs together to form a `stacked LSTM`,
| with the second LSTM taking in outputs of the first LSTM and
| computing the final results. Default: 1
| bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
| Default: ``True``
| batch_first: If ``True``, then the input and output tensors are provided
| as `(batch, seq, feature)` instead of `(seq, batch, feature)`.
| Note that this does not apply to hidden or cell states. See the
| Inputs/Outputs sections below for details. Default: ``False``
| dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
| LSTM layer except the last layer, with dropout probability equal to
| :attr:`dropout`. Default: 0
| bidirectional: If ``True``, becomes a bidirectional LSTM. Default: ``False``
| proj_size: If ``> 0``, will use LSTM with projections of corresponding size. Default: 0

input_size:一般是词嵌入的大小

hidden_size:隐含层的维度

num_layers:默认是1,单层LSTM

bias:是否使用bias

batch_first:默认为False,如果设置为True,则表示第一个维度表示的是batch_size

dropout:直接看英文吧

bidirectional:默认为False,表示单向LSTM,当设置为True,表示为双向LSTM,一般和num_layers配合使用(需要注意的是当该项设置为True时,将num_layers设置为1,表示由1个双向LSTM构成)

模型输入输出-单向LSTM

import torch
import torch.nn as nn
import numpy as np inputs_numpy = np.random.random((64,32,300))
inputs = torch.from_numpy(inputs_numpy).to(torch.float32)
inputs.shape

torch.Size([64, 32, 300]):表示[batchsize, max_length, embedding_size]

hidden_size = 128
lstm = nn.LSTM(300, 128, batch_first=True, num_layers=1)
output, (hn, cn) = lstm(inputs)
print(output.shape)
print(hn.shape)
print(cn.shape)

torch.Size([64, 32, 128])

torch.Size([1, 64, 128])

torch.Size([1, 64, 128])

说明:

output:保存了每个时间步的输出,如果想要获取最后一个时间步的输出,则可以这么获取:output_last = output[:,-1,:]

h_n:包含的是句子的最后一个单词的隐藏状态,与句子的长度seq_length无关

c_n:包含的是句子的最后一个单词的细胞状态,与句子的长度seq_length无关

另外:最后一个时间步的输出等于最后一个隐含层的输出

output_last = output[:,-1,:]
hn_last = hn[-1]
print(output_last.eq(hn_last))

模型输入输出-双向LSTM

首先我们要明确:

output :(seq_len, batch, num_directions * hidden_size)

h_n:(num_layers * num_directions, batch, hidden_size)

c_n :(num_layers * num_directions, batch, hidden_size)

其中num_layers表示层数,这里是1,num_directions表示方向数,由于是双向的,这里是2,也是,我们就有下面的结果:

import torch
import torch.nn as nn
import numpy as np inputs_numpy = np.random.random((64,32,300))
inputs = torch.from_numpy(inputs_numpy).to(torch.float32)
inputs.shape
hidden_size = 128
lstm = nn.LSTM(300, 128, batch_first=True, num_layers=1, bidirectional=True)
output, (hn, cn) = lstm(inputs)
print(output.shape)
print(hn.shape)
print(cn.shape)

torch.Size([64, 32, 256])

torch.Size([2, 64, 128])

torch.Size([2, 64, 128])

这里面的hn包含两个元素,一个是正向的隐含层输出,一个是方向的隐含层输出。

#获取反向的最后一个output
output_last_backward = output[:,0,-hidden_size:]
#获反向最后一层的hn
hn_last_backward = hn[-1] #反向最后的output等于最后一层的hn
print(output_last_backward.eq(hn_last_backward)) #获取正向的最后一个output
output_last_forward = output[:,-1,:hidden_size]
#获取正向最后一层的hn
hn_last_forward = hn[-2]
# 反向最后的output等于最后一层的hn
print(output_last_forward.eq(hn_last_forward))

https://www.cnblogs.com/LiuXinyu12378/p/12322993.html

https://blog.csdn.net/m0_45478865/article/details/104455978

https://blog.csdn.net/foneone/article/details/104002372

关于torch.nn.LSTM()的输入和输出的更多相关文章

  1. torch.nn.LSTM()函数维度详解

    123456789101112lstm=nn.LSTM(input_size,                     hidden_size,                      num_la ...

  2. PyTorch官方中文文档:torch.nn

    torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...

  3. pytorch nn.LSTM()参数详解

    输入数据格式:input(seq_len, batch, input_size)h0(num_layers * num_directions, batch, hidden_size)c0(num_la ...

  4. pytorch中文文档-torch.nn.init常用函数-待添加

    参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor ...

  5. pytorch中文文档-torch.nn常用函数-待添加-明天继续

    https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kerne ...

  6. torch.nn.functional中softmax的作用及其参数说明

    参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/functional/#_1 class torch.nn.Soft ...

  7. torch.nn.Embedding理解

    Pytorch官网的解释是:一个保存了固定字典和大小的简单查找表.这个模块常用来保存词嵌入和用下标检索它们.模块的输入是一个下标的列表,输出是对应的词嵌入. torch.nn.Embedding(nu ...

  8. pytorch torch.nn.functional实现插值和上采样

    interpolate torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', ali ...

  9. pytorch torch.nn 实现上采样——nn.Upsample

    Vision layers 1)Upsample CLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align ...

随机推荐

  1. 八、数据拟合分析seaborn

    本文的主要目的是记住最主要的函数,具体的用法还得查API文档. 首先导入包: 1 %matplotlib inline 2 import numpy as np 3 import pandas as ...

  2. CVPR2020论文解读:OCR场景文本识别

    CVPR2020论文解读:OCR场景文本识别 ABCNet:  Real-time Scene Text Spotting with Adaptive Bezier-Curve Network∗ 论文 ...

  3. 如何运行具有奇点的NGC深度学习容器

    如何运行具有奇点的NGC深度学习容器 How to Run NGC Deep Learning Containers with Singularity 高性能计算机和人工智能的融合使新的科学突破成为可 ...

  4. mysql表ERROR 144 (HY000)Table 'dede_archives' is marked

    1.故障现象 mysql> select count(*) from dede_archives;ERROR 144 (HY000): Table '.xx' is marked as cras ...

  5. Docker与k8s的恩怨情仇(一)—成为PaaS前浪的Cloud Foundry

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 大家在工作中或许或多或少都接触过Docker,那你知道Docker以及容器化背后的原理到底是什么吗? 容器化 ...

  6. yum的配置

    1. 创建两台虚拟机[root@room9pc01 ~]# clone-vm7Enter VM number: 8 [root@room9pc01 ~]# clone-vm7Enter VM numb ...

  7. UF_DRAW 制图操作

    Open C uc6476uc6477uc6478uc6479uc6480uc6481uc6482uc6483uc6484uc6485uc6486uc6488uc6489uc6492uc6494uc6 ...

  8. java并发编程实战之线程安全性(一)

    1.1什么是线程安全性 要对线程安全性给出一个确切的定义是非常复杂的.最核心的概念就是正确性.正确性:某个类的行为与其规范完全一致.在良好的规范中通常会定义各种不变性条件来约束对象的状态,以及定义各种 ...

  9. 【模板】 RMQ求区间最值

    RMQ RMQ简单来说就是求区间的最大值(最小值) 核心算法:动态规划 RMQ(以下以求最大值为例) F[i,j]表示 从 i 开始 到i+2j -1这个区间中的最大值 状态转移方程 F[i,j]=m ...

  10. ORA-19504: failed to create file "/u01/backup/db_0_20190603_1" ORA-27038: created file already exists

    1.问题:在用rman进行0级备份时,报错: ORA-19504: failed to create file "/u01/backup/db_0_20190603_1"ORA-2 ...