Nicholas Carlini, David Wagner, Towards Evaluating the Robustness of Neural Networks

提出了在不同范数下\(\ell_0, \ell_2, \ell_{\infty}\)下生成adversarial samples的方法, 实验证明此类方法很有效.

主要内容

基本的概念

本文主要针对多分类问题, 假设神经网络\(F:x \in \mathbb{R}^n \rightarrow y \in \mathbb{R}^m\), 其网络参数为\(\theta\).

假设:

\[F(x)=\mathrm{softmax}(Z(x))=y,
\]

其中\(\mathrm{softmax}(x)_i=\frac{e^{x_i}}{\sum_j e^{x_j}}\).

\[C(x) = \arg \max_i F(x)_i,
\]

为\(x\)的预测类, 不妨设\(C^*(x)\)为其真实的类别.

Adversarial samples 的目标就是构建一个与\(x\)相差无几的\(x'\)(\(\|x-x'\|\)足够小),但是\(C(x')\not =C^*(x)\). 很多构建Adversarial samples可以指定类别:

  • Average Case: 在不正确的标签中随机选取类别;
  • Best Case: 对所有不正确的标签生成Adversariak samples, 并选择最容易成功(即骗过网络)的类别;
  • Worst Case:对所有不正确的标签生成Adversariak samples, 并选择最不容易成功的类别.

文章中介绍了不少现有的方法, 这里不多赘述.

目标函数

一般可以通过如下问题求解\(x'=x+\delta\):

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) \\
\mathrm{s.t.} & C(x+\delta)=t \\
& x + \delta \in [0, 1]^n,
\end{array}
\]

其中\(\mathcal{D}\)衡量\(x,x+\delta\)之间的距离, 常常为\(\ell_0, \ell_2, \ell_{\infty}\).

但是\(C(x+\delta)=t\)这个条件离散, 这个问题很难直接求解, 作者给出的思路是构造一些函数\(f(x,t)\), 使得当且仅当\(f(x,t)\le0\)的时候此条件满足.

则问题转换为:

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) \\
\mathrm{s.t.} & f(x,t) \le 0 \\
& x + \delta \in [0, 1]^n,
\end{array}
\]

进一步

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) + cf(x,t) \\
\mathrm{s.t.}
& x + \delta \in [0, 1]^n.
\end{array}
\]

作者给出了7种符合此类条件的函数(作者尤为推荐第6种):

如何选择c

binary search

如何应对Box约束

图片的元素需要满足\(0\le x_i \le 1\), 如何满足此约束:

  • 简单粗暴地对其裁剪, 大于1的为1, 小于0的为0, 但是这种方法在梯度下降方法比较复杂(如带momentum)的时候效果可能不会太好(既然momemtum要记录变量改变的方向, 而我们又擅自对此方向进行更改);
  • 用\(f(\min (\max(x+\delta,0),1)\)替代\(f(x+\delta)\), 我的理解是, 每次不改变原变量\(x'\), 然后把clip后的\(x'\)喂给\(f\). 作者说此类方法容易方法在次优解间来回振荡的现象;
  • 定义
\[\delta_i = \frac{1}{2}(\tanh (w_i) +1)-x_i,
\]

于是我们只需优化\(w_i\), 且保证\(x_i + \delta_i \in [0, 1]\).

\(L_2\) attack

\[\min \quad \|\frac{1}{2}(\tanh(w)+1)-x\|_2^2+c\cdot f(\frac{1}{2}(\tanh(w)+1), t),
\]

其中

\[f(x',t)=\max(\max \{Z(x')_i:i \not =t\}-Z(x')_t, -\kappa),
\]

是对第6种方法的一个小改进, 其中\(\kappa\)反应了我们对误判发生的信心.

\(L_0\) attack

因为\(L_0\)范数不可微, 所以每一次, 我们先利用\(L_2\) attack来寻找合适的\(\delta\), 令\(g=\nabla f(x+\delta)\), 根据\(g_i \delta_i\)判断每个像素点的重要性, 最不重要的我们删去(根据文中的意思是永久删去).

  • Input: \(x, c\)
  • \(I=\empty\)
  • Do ...:
    1. 计算在\(L_2\)下的解\(x+\delta\)(倘若在\(c\)下找不到, 则在\(2c\)条件下找(嵌套));
    2. \(g=\nabla f(x+\delta)\);
    3. \(i=\arg \min_i g_i \cdot \delta_i, i \not \in I\), 然后\(I=I \cup \{i\}\);

在利用\(L_2\)寻找\(\delta\)的过程中, 若失败, 令\(c=2c\)并重复进行, 直到其成功或者超过了最大的迭代次数.

\(L_{\infty}\) attack

\(\|\delta\|_{\infty}\)作为惩罚项(?)只会针对个别元素, 这在实际实验的时候并不友好, 往往会出现振荡, 于是作者想了一种替代

\[\min \quad c \cdot f( x+ \delta) + \sum_i [(\delta_i-\tau)^+],
\]

这样我们就把可以关注部分突出而非个别.

Towards Evaluating the Robustness of Neural Networks的更多相关文章

  1. CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲

    前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...

  2. Hacker's guide to Neural Networks

    Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...

  3. 神经网络指南Hacker's guide to Neural Networks

    Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Learning for a few years as part of ...

  4. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  5. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  6. ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS

    ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed ...

  7. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  8. (转)A Beginner's Guide To Understanding Convolutional Neural Networks

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  9. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

随机推荐

  1. 日常Java 2021/10/25

    ArrayList存储数字 import java.util.ArrayList; public class Arr_test { public static void main(String[] a ...

  2. 并发 并行 进程 线程 协程 异步I/O python async

    一些草率不精确的观点: 并发: 一起发生,occurence: sth that happens. 并行: 同时处理. parallel lines: 平行线.thread.join()之前是啥?落霞 ...

  3. Linux FTP的主动模式与被动模式

    Linux FTP的主动模式与被动模式 一.FTP主被动模式        FTP是文件传输协议的简称,ftp传输协议有着众多的优点所以传输文件时使用ftp协议的软件很多,ftp协议使用的端口是21( ...

  4. Sibel Tools和Siebel Cilent的安装步骤

    关于Siebel的资料在网上是少之又少,当时安装开发工具的时候花了挺长时间的,把步骤记录了下来. 一安装win32_11gR2_client 首先要安装Oracle数据库的客户端,必须是32位,安装过 ...

  5. IOS_UIButton去掉系统的按下高亮置灰效果

    setAdjustsImageWhenHighlighted   // default is YES. if YES, image is drawn darker when highlighted(p ...

  6. 使用mybatis更新数据时 时间字段的值自动更新

    1.debug打印出来执行的sql语句发现并没有修改时间的字段,最后发现是设计表时勾选了根据当前时间戳更新..... 去掉该字段的根据当前时间戳更新语句: alter table tableName ...

  7. 3.2 go WaitGroup代码示例

    sync.WaitGroup提供了一种安全的多协程处理方法,内部使用race.atomic来处理,避免了资源竞争及锁的产生. 主要的方法有Add.Done.Wait,可以等待一组协程全部执行完毕后,主 ...

  8. 部署应用程序到Tomcat的webapps目录

    一.方法如下 1.通过MyEclipse上方工具栏Manage Deployments,依次选择项目和服务器: 2.通过右击项目Export,生成war包到webapps中: 3.复制项目WebRoo ...

  9. C++STL标准库学习笔记(四)multiset续

    自定义排序规则的multiset用法 前言: 在这个笔记中,我把大多数代码都加了注释,我的一些想法和注解用蓝色字体标记了出来,重点和需要关注的地方用红色字体标记了出来,只不过这一次的笔记主要是我的补充 ...

  10. php-正则邮箱验证及详解

    当前的邮箱格式有哪些//1.第1种是QQ邮箱,它的后缀名是,@qq, .com.// 2.第2种是网易邮箱后缀名是,@163.com或者,@126.com// 3.第3种是雅虎邮箱,后缀名是,@yah ...