Nicholas Carlini, David Wagner, Towards Evaluating the Robustness of Neural Networks

提出了在不同范数下\(\ell_0, \ell_2, \ell_{\infty}\)下生成adversarial samples的方法, 实验证明此类方法很有效.

主要内容

基本的概念

本文主要针对多分类问题, 假设神经网络\(F:x \in \mathbb{R}^n \rightarrow y \in \mathbb{R}^m\), 其网络参数为\(\theta\).

假设:

\[F(x)=\mathrm{softmax}(Z(x))=y,
\]

其中\(\mathrm{softmax}(x)_i=\frac{e^{x_i}}{\sum_j e^{x_j}}\).

\[C(x) = \arg \max_i F(x)_i,
\]

为\(x\)的预测类, 不妨设\(C^*(x)\)为其真实的类别.

Adversarial samples 的目标就是构建一个与\(x\)相差无几的\(x'\)(\(\|x-x'\|\)足够小),但是\(C(x')\not =C^*(x)\). 很多构建Adversarial samples可以指定类别:

  • Average Case: 在不正确的标签中随机选取类别;
  • Best Case: 对所有不正确的标签生成Adversariak samples, 并选择最容易成功(即骗过网络)的类别;
  • Worst Case:对所有不正确的标签生成Adversariak samples, 并选择最不容易成功的类别.

文章中介绍了不少现有的方法, 这里不多赘述.

目标函数

一般可以通过如下问题求解\(x'=x+\delta\):

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) \\
\mathrm{s.t.} & C(x+\delta)=t \\
& x + \delta \in [0, 1]^n,
\end{array}
\]

其中\(\mathcal{D}\)衡量\(x,x+\delta\)之间的距离, 常常为\(\ell_0, \ell_2, \ell_{\infty}\).

但是\(C(x+\delta)=t\)这个条件离散, 这个问题很难直接求解, 作者给出的思路是构造一些函数\(f(x,t)\), 使得当且仅当\(f(x,t)\le0\)的时候此条件满足.

则问题转换为:

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) \\
\mathrm{s.t.} & f(x,t) \le 0 \\
& x + \delta \in [0, 1]^n,
\end{array}
\]

进一步

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) + cf(x,t) \\
\mathrm{s.t.}
& x + \delta \in [0, 1]^n.
\end{array}
\]

作者给出了7种符合此类条件的函数(作者尤为推荐第6种):

如何选择c

binary search

如何应对Box约束

图片的元素需要满足\(0\le x_i \le 1\), 如何满足此约束:

  • 简单粗暴地对其裁剪, 大于1的为1, 小于0的为0, 但是这种方法在梯度下降方法比较复杂(如带momentum)的时候效果可能不会太好(既然momemtum要记录变量改变的方向, 而我们又擅自对此方向进行更改);
  • 用\(f(\min (\max(x+\delta,0),1)\)替代\(f(x+\delta)\), 我的理解是, 每次不改变原变量\(x'\), 然后把clip后的\(x'\)喂给\(f\). 作者说此类方法容易方法在次优解间来回振荡的现象;
  • 定义
\[\delta_i = \frac{1}{2}(\tanh (w_i) +1)-x_i,
\]

于是我们只需优化\(w_i\), 且保证\(x_i + \delta_i \in [0, 1]\).

\(L_2\) attack

\[\min \quad \|\frac{1}{2}(\tanh(w)+1)-x\|_2^2+c\cdot f(\frac{1}{2}(\tanh(w)+1), t),
\]

其中

\[f(x',t)=\max(\max \{Z(x')_i:i \not =t\}-Z(x')_t, -\kappa),
\]

是对第6种方法的一个小改进, 其中\(\kappa\)反应了我们对误判发生的信心.

\(L_0\) attack

因为\(L_0\)范数不可微, 所以每一次, 我们先利用\(L_2\) attack来寻找合适的\(\delta\), 令\(g=\nabla f(x+\delta)\), 根据\(g_i \delta_i\)判断每个像素点的重要性, 最不重要的我们删去(根据文中的意思是永久删去).

  • Input: \(x, c\)
  • \(I=\empty\)
  • Do ...:
    1. 计算在\(L_2\)下的解\(x+\delta\)(倘若在\(c\)下找不到, 则在\(2c\)条件下找(嵌套));
    2. \(g=\nabla f(x+\delta)\);
    3. \(i=\arg \min_i g_i \cdot \delta_i, i \not \in I\), 然后\(I=I \cup \{i\}\);

在利用\(L_2\)寻找\(\delta\)的过程中, 若失败, 令\(c=2c\)并重复进行, 直到其成功或者超过了最大的迭代次数.

\(L_{\infty}\) attack

\(\|\delta\|_{\infty}\)作为惩罚项(?)只会针对个别元素, 这在实际实验的时候并不友好, 往往会出现振荡, 于是作者想了一种替代

\[\min \quad c \cdot f( x+ \delta) + \sum_i [(\delta_i-\tau)^+],
\]

这样我们就把可以关注部分突出而非个别.

Towards Evaluating the Robustness of Neural Networks的更多相关文章

  1. CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲

    前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...

  2. Hacker's guide to Neural Networks

    Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...

  3. 神经网络指南Hacker's guide to Neural Networks

    Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Learning for a few years as part of ...

  4. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  5. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  6. ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS

    ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed ...

  7. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  8. (转)A Beginner's Guide To Understanding Convolutional Neural Networks

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  9. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

随机推荐

  1. 08-认证(Authorization)

    这又是一个非常实用的功能,对我们做接口测试来说,经常要处理登录认证的情况 .如果不用这个Authorization其实也能解决认证的问题,无非就是把要认证的数据按照要求在指定位置传入参数即可.比如我们 ...

  2. winxp 关闭445端口

    关闭445端口的方法方法很多,但是我比较推荐以下这种方法: 修改注册表,添加一个键值 Hive: HKEY_LOCAL_MACHINE Key: System\Controlset\Services\ ...

  3. python的urllib学习

    1.基本方法 urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None, capath=None, cadefault=Fals ...

  4. 【C/C++】习题3-5 谜题/算法竞赛入门经典/数组和字符串

    [题目] 有一个5*5的网络,恰好有一个格子是空的(空格),其他格子各有一个字母. 指令:A, B, L, R 把空格上.下.左.右的相邻字母移到空格中. [输入] 初始网格和指令序列(以数字0结束) ...

  5. DMA(Data Migration Assistant)迁移SQLServer数据库

    DMA适用于 本地SQLServer向Azure SQL Database迁移 两台不同的数据库服务器之间迁移 高版本->低版本 或 低版本->高版本 本文以两台不同服务器的低版本(SQL ...

  6. Springboot 入门及Demo

    一:SpringBoot入门1.1:SpringBoot简介Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的 ...

  7. react功能实现-组件创建

    这里主要从两个角度来分析创建一个组件需要怎么做,一个是元素,一个是数据.整理向,大量借鉴,非原创. 1.渲染组件. 我们先明确一点,所有的元素都必须通过render方法来输出渲染.所有,每个组件类最终 ...

  8. 模糊C均值算法

    Fuzzy C-Means读书笔记 一.算法简介 很显然,图中的数据集可分为两个簇.借鉴K-Means算法的思想,利用单个特殊的点(质心)表示一个簇.因此,我们用\(C_1\)和\(C_2\)分别表示 ...

  9. YonBuilder低代码开发实践:4行代码实现跨实体列表数据同步

    提到增.删.改.查等数据维护,后端开发者们再熟悉不过了.传统的数据维护通过操作数据库的方式实现,步骤比较繁琐,需要通过Java代码实现数据库链接,然后编写SQL语句.编写实体,将想要的数据存到相应的数 ...

  10. 数组队列如何手撕?解密ArrayBlockingQueue的实现内幕!

    队列 聊起队列,你一定会联想到一个与队列相似的数据结构:栈. 为了更好的理解什么是队列,我们将它和栈来比较一下: 队列的特点是:先进先出,如下图,1先进,1就先出. 图1:队列的图解 栈的特点是:先进 ...