Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustness and Interpretability. arXiv preprint axXiv 2009.04923, 2020.

也算是一种对抗训练吧, 有区别的是构造对抗样本的方式, 以及用的是惩罚项而非仅用对抗样本训练.

主要内容

考虑干净样本\(x\)和扰动\(v\), 则我们自然希望

\[\tag{*}
\min_{\theta} \max_{\|v\|\le \epsilon} \ell(x+v;\theta)- \ell(x),
\]

其中\(\ell\)是分类损失. 注意到右端项的二阶近似为

\[\tag{3}
Q(v;x):= \nabla_x \ell(x) \cdot v + \frac{1}{2} v^T \nabla_x \ell(x) v.
\]

故我们可以转而优化此近似项. 当然, 一般的AT方法是用project gradient去逼近右端项, 假设前者

\[\tag{4}
v_Q = \arg \max_{\|v\|_p \le \epsilon} Q(v;x),
\]

后者

\[v_A = \arg \max_{\|v\|_p \le \epsilon} \ell (x+v).
\]

那么二者的差距有下面的定理保证

说实话, 这个定理没多大意义.

如果单纯优化(*)没法带来精度, 所以构造一个正则化项

\[\min_{\theta} \mathbb{E}_{x\sim \mathcal{D}} [\ell(x)+r \cdot \ell_Q(x)],
\]

其中\(\ell_Q(x)=\ell(x+v_Q)-\ell(x)\).

注: 有一个疑问, 按照道理\(r \in (0, 1)\), 可是论文的实验是\((0.5, 1.5)\), 而且有几个实验挑了的确大于1, 这不就意味着需要\(\min (1-r)\ell(x)\), 这不就让分类变差了?

(4)式的求解

作者利用Frank-Wofle (FW) 去求解(4)式, 即

\[\tag{7}
\left \{
\begin{array}{l}
s^k := \arg \max_{\|s\|_p\le \epsilon} \: s \cdot \nabla_v Q(v^k)\\
v^{k+1} := (1-\gamma^k) v^k + \gamma^k s^k,
\end{array} \right.
\]

其中\(v^k=\frac{2}{k+2}\), \(v^0=\epsilon g/\|g\|_p, \: g=\nabla_x \ell(x)\). (7)式的第一步式可以显示求解的

\[\tag{8}
s^k=P_{FW}(v^k;p)=\alpha \cdot \mathrm{sgn} (\nabla_v Q(v^k)_i) |\nabla_v Q(v^k)_i|^{p/q},
\]

其中\(\alpha\)使得\(\|s^k\|_p=\epsilon\), \(|x|^m\)是逐项的.

因为

\[\tag{9}
\nabla_x Q(v) = \nabla_x \ell(x) + \nabla^2_x \ell(x)v,
\]

而计算hessian矩阵需要大量的计算, 故采用差分逼近

FE:

\[\tag{10}
\nabla_x^2 \ell(x)v \approx \frac{\nabla_x \ell(x+hv)-\nabla_x \ell(x)]}{h},
\]

CD:

\[\tag{11}
\nabla_x^2 \ell(x)v \approx \frac{\nabla_x \ell(x+hv)-\nabla_x \ell(x-h)]}{2h}.
\]

超参数

\((h, r)\).

CIFAR10:

\(L_2\): FE(3): (1.15, 1.05) , CD(3): (0.95, 0.999);

\(L_{\infty}\): FE(3): (1.05, 1.05), CD(3): (0.95, 1.15).

Second Order Optimization for Adversarial Robustness and Interpretability的更多相关文章

  1. Improving Adversarial Robustness via Channel-Wise Activation Suppressing

    目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...

  2. Improving Adversarial Robustness Using Proxy Distributions

    目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...

  3. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks

    目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...

  4. Certified Adversarial Robustness via Randomized Smoothing

    目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized S ...

  5. IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES

    目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...

  6. Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...

  7. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  8. Research Guide: Pruning Techniques for Neural Networks

    Research Guide: Pruning Techniques for Neural Networks 2019-11-15 20:16:54 Original: https://heartbe ...

  9. ICLR 2013 International Conference on Learning Representations深度学习论文papers

    ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...

随机推荐

  1. 大数据学习----day27----hive02------1. 分桶表以及分桶抽样查询 2. 导出数据 3.Hive数据类型 4 逐行运算查询基本语法(group by用法,原理补充) 5.case when(练习题,多表关联)6 排序

    1. 分桶表以及分桶抽样查询 1.1 分桶表 对Hive(Inceptor)表分桶可以将表中记录按分桶键(某个字段对应的的值)的哈希值分散进多个文件中,这些小文件称为桶. 如要按照name属性分为3个 ...

  2. 【leetcode】170. Two Sum III - Data structure design 两数之和之三 - 数据结构设计

    Design and implement a TwoSum class. It should support the following operations:  add and find. add  ...

  3. C语言产生随机数(伪)

    C语言的获取随机数的函数为rand(), 可以获得一个非负整数的随机数.要调用rand需要引用头文件stdlib.h.要让随机数限定在一个范围,可以采用模除加加法的方式.要产生随机数r, 其范围为 m ...

  4. Oracle中分割逗号函数REGEXP_SUBSTR

    最近优化FORM中的查询条件遇到某个字段可以选取多个值的问题,思路当然就是选取时将多个值通过某个符号拼接起来,查询数据的时候将拼接后的字符串按照符号分割开,在分割逗号的时候用到了一个新的方法REGEX ...

  5. 【Spring Framework】spring管理自己new的对象

    使用AutowireCapableBeanFactory手动注入 使用.newInstance();创建对象的话,如果其他对象都使用Spring Autowired,还需要手动创建所有依赖的Bean: ...

  6. pandas读取csv文件中文乱码问题

    1.为什么会出现乱码问题,用什么方式编码就用什么方式解码,由于csv不是用的utf-8编码,故不能用它解码. 常用的编码方式有 utf-8,ISO-8859-1.GB18030等. 2.中文乱码原因: ...

  7. JS21. 使用原生JS封装一个公共的Alert插件(HTML5: Shadow Dom)

    效果预览 Shadow DOM Web components  的一个重要属性是封装--可以将标记结构.样式和行为隐藏起来,并与页面上的其他代码相隔离,保证不同的部分不会混在一起,可使代码更加干净.整 ...

  8. 1、Linux下安装JDK

    1.Linux下安装JDK 1 权限设置(可忽略) 1.1 安装过程与Windows安装过程相差不多,下载解压安装 1.切换root用户( 如果当前登录的用户权限够的话,请忽略这步) 由于创建目录的位 ...

  9. 淘宝网购物车jquery源码和网易新用户注册页面表单验证的练习

    淘宝网购物车源码: <html lang="en"> <head> <meta charset="UTF-8"> <t ...

  10. 30个类手写Spring核心原理之AOP代码织入(5)

    本文节选自<Spring 5核心原理> 前面我们已经完成了Spring IoC.DI.MVC三大核心模块的功能,并保证了功能可用.接下来要完成Spring的另一个核心模块-AOP,这也是最 ...