Second Order Optimization for Adversarial Robustness and Interpretability
概
也算是一种对抗训练吧, 有区别的是构造对抗样本的方式, 以及用的是惩罚项而非仅用对抗样本训练.
主要内容
考虑干净样本\(x\)和扰动\(v\), 则我们自然希望
\min_{\theta} \max_{\|v\|\le \epsilon} \ell(x+v;\theta)- \ell(x),
\]
其中\(\ell\)是分类损失. 注意到右端项的二阶近似为
Q(v;x):= \nabla_x \ell(x) \cdot v + \frac{1}{2} v^T \nabla_x \ell(x) v.
\]
故我们可以转而优化此近似项. 当然, 一般的AT方法是用project gradient去逼近右端项, 假设前者
v_Q = \arg \max_{\|v\|_p \le \epsilon} Q(v;x),
\]
后者
\]
那么二者的差距有下面的定理保证

说实话, 这个定理没多大意义.
如果单纯优化(*)没法带来精度, 所以构造一个正则化项
\]
其中\(\ell_Q(x)=\ell(x+v_Q)-\ell(x)\).
注: 有一个疑问, 按照道理\(r \in (0, 1)\), 可是论文的实验是\((0.5, 1.5)\), 而且有几个实验挑了的确大于1, 这不就意味着需要\(\min (1-r)\ell(x)\), 这不就让分类变差了?
(4)式的求解
作者利用Frank-Wofle (FW) 去求解(4)式, 即
\left \{
\begin{array}{l}
s^k := \arg \max_{\|s\|_p\le \epsilon} \: s \cdot \nabla_v Q(v^k)\\
v^{k+1} := (1-\gamma^k) v^k + \gamma^k s^k,
\end{array} \right.
\]
其中\(v^k=\frac{2}{k+2}\), \(v^0=\epsilon g/\|g\|_p, \: g=\nabla_x \ell(x)\). (7)式的第一步式可以显示求解的
s^k=P_{FW}(v^k;p)=\alpha \cdot \mathrm{sgn} (\nabla_v Q(v^k)_i) |\nabla_v Q(v^k)_i|^{p/q},
\]
其中\(\alpha\)使得\(\|s^k\|_p=\epsilon\), \(|x|^m\)是逐项的.
因为
\nabla_x Q(v) = \nabla_x \ell(x) + \nabla^2_x \ell(x)v,
\]
而计算hessian矩阵需要大量的计算, 故采用差分逼近
FE:
\nabla_x^2 \ell(x)v \approx \frac{\nabla_x \ell(x+hv)-\nabla_x \ell(x)]}{h},
\]
CD:
\nabla_x^2 \ell(x)v \approx \frac{\nabla_x \ell(x+hv)-\nabla_x \ell(x-h)]}{2h}.
\]

超参数
\((h, r)\).
CIFAR10:
\(L_2\): FE(3): (1.15, 1.05) , CD(3): (0.95, 0.999);
\(L_{\infty}\): FE(3): (1.05, 1.05), CD(3): (0.95, 1.15).
Second Order Optimization for Adversarial Robustness and Interpretability的更多相关文章
- Improving Adversarial Robustness via Channel-Wise Activation Suppressing
目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...
- Improving Adversarial Robustness Using Proxy Distributions
目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...
- Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...
- Certified Adversarial Robustness via Randomized Smoothing
目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized S ...
- IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES
目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...
- Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- Research Guide: Pruning Techniques for Neural Networks
Research Guide: Pruning Techniques for Neural Networks 2019-11-15 20:16:54 Original: https://heartbe ...
- ICLR 2013 International Conference on Learning Representations深度学习论文papers
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...
随机推荐
- 数据集成工具—FlinkX
@ 目录 FlinkX的安装与简单使用 FlinkX的安装 FlinkX的简单使用 读取mysql中student表中数据 FlinkX本地运行 MySQLToHDFS MySQLToHive MyS ...
- 零基础学习java------30---------wordCount案例(涉及到第三种多线程callable)
知识补充:多线程的第三种方式 来源:http://www.threadworld.cn/archives/39.html 创建线程的两种方式,一种是直接继承Thread,另外一种就是实现Runnabl ...
- 《C陷阱与缺陷》 第0章导读 第1章词法陷阱
1.= 与==的区别 赋值运算符= 的优先级要小于逻辑运算符== 也就是说,会进行先逻辑上的比较,然后再把比较结果进行赋值,很合理. getc库是什么??? 1.C语言中有单字符 = 也有多字符单元如 ...
- Oracle—回车、换行符
1.回车换行符 chr(10)是换行符, chr(13)是回车, 增加换行符: select ' update ' || table_name || ' set VALID_STATE =''0A'' ...
- 机器学习常用python包
(py37) ai@ai:~$ pip freeze |grep -v '@' astor==0.8.1 certifi==2021.5.30 chardet==4.0.0 cycler==0.10. ...
- IntentFilter,PendingIntent
1.当Intent在组件间传递时,组件如果想告知Android系统自己能够响应那些Intent,那么就需要用到IntentFilter对象. IntentFilter对象负责过滤掉组件无法响应和处理的 ...
- virtualbox Linux安装增强功能
1.点击<设备>--><安装增强功能> 2.创建安装包挂载目录,并挂载 #创建挂载目录 mkdir /mnt/cdrom #挂载光盘内容 mount -t auto -r ...
- 【Java基础】Java 注解详解
对于Java注解,我之前的印象是很模糊的,总觉得这个东西经常听说,也经常用,但是具体是怎么回事,好像没有仔细学习过,说到注解,立马想到@Controller,仅此而已. 对于Java注解,我咨询过一些 ...
- 利用ajax,js以及正则表达式来验证表单递交
<!DOCTYPE html><html lang="en"> <head> <meta charset="utf-8" ...
- 使用$.post方式来实现页面的局部刷新功能
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...