numpy库提供非常便捷的数组运算,方便数据的处理。

1、数组与标量之间可直接进行运算

In [45]: a
Out[45]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

In [46]: a/5
Out[46]:
array([[ 0. , 0.2, 0.4, 0.6],
[ 0.8, 1. , 1.2, 1.4],
[ 1.6, 1.8, 2. , 2.2]])
1
2
3
4
5
6
7
8
9
10
11
2、NumPy一元函数对ndarray中的数据执行元素级运算的函数

np.abs(x)、np.fabs(x) : 计算数组各元素的绝对值
np.sqrt(x) : 计算数组各元素的平方根
np.square(x) : 计算数组各元素的平方
np.log(x) 、np.log10(x)、np.log2(x) : 计算数组各元素的自然对数、10底对数和2底对数
np.ceil(x) 、np.floor(x) : 计算数组各元素的ceiling值或floor值
In [48]: a[1,1] = -1

In [49]: a
Out[49]:
array([[ 0, 1, 2, 3],
[ 4, -1, 6, 7],
[ 8, 9, 10, 11]])

In [50]: np.abs(a)
Out[50]:
array([[ 0, 1, 2, 3],
[ 4, 1, 6, 7],
[ 8, 9, 10, 11]])
1
2
3
4
5
6
7
8
9
10
11
12
13
np.rint(x) : 计算数组各元素的四舍五入值
np.modf(x) : 将数组各元素的小数和整数部分以两个独立数组形式返回
np.cos(x)、 np.cosh(x)、np.sin(x)、 np.sinh(x)、np.tan(x) 、np.tanh(x) : 计算数组各元素的普通型和双曲型三角函数
np.exp(x) : 计算数组各元素的指数值
np.sign(x) : 计算数组各元素的符号值,1(+), 0, ‐1(‐)
3、NumPy二元函数对ndarray中的数据执行元素级运算的函数

+、 ‐、 * 、/ 、** 两个数组各元素进行对应运算
np.maximum(x,y) 、np.fmax()、 np.minimum(x,y) 、np.fmin() :元素级的最大值/最小值计算
np.mod(x,y) :元素级的模运算
np.copysign(x,y) : 将数组y中各元素值的符号赋值给数组x对应元素
> < >= <= == != 算术比较,产生布尔型数组
In [59]: b = np.full_like(a,2)

In [60]: b
Out[60]:
array([[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]])

In [61]: a*b
Out[61]:
array([[ 0, 2, 4, 6],
[ 8, -2, 12, 14],
[16, 18, 20, 22]])

In [62]: np.maximum(a,b)
Out[62]:
array([[ 2, 2, 2, 3],
[ 4, 2, 6, 7],
[ 8, 9, 10, 11]])

In [63]: a>b
Out[63]:
array([[False, False, False, True],
[ True, False, True, True],
[ True, True, True, True]], dtype=bool)
————————————————
版权声明:本文为CSDN博主「brucewong0516」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/brucewong0516/article/details/79186176

python中numpy库ndarray多维数组的的运算:np.abs(x)、np.sqrt(x)、np.modf(x)等的更多相关文章

  1. python中的矩阵、多维数组----numpy

    https://docs.scipy.org/doc/numpy-dev/user/quickstart.html  (numpy官网一些教程) numpy教程:数组创建 python中的矩阵.多维数 ...

  2. 一、Numpy库与多维数组

    # Author:Zhang Yuan import numpy as np '''重点摘录: 轴的索引axis=i可以理解成是根据[]层数来判断的,0表示[],1表示[[]]... Numpy广播的 ...

  3. NumPy之:ndarray多维数组操作

    NumPy之:ndarray多维数组操作 目录 简介 创建ndarray ndarray的属性 ndarray中元素的类型转换 ndarray的数学运算 index和切片 基本使用 index wit ...

  4. Python中的矩阵、多维数组:Numpy

    Numpy 是Python中科学计算的核心库.它提供一个高性能多维数据对象,以及操作这个对象的工具.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对 ...

  5. 2.python中的矩阵、多维数组----numpy

    最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得 ...

  6. NumPy 之 ndarray 多维数组初识

    why 回顾我的数据分析入门, 最开始时SPSS+EXCEL,正好15年初是上大一下的时候, 因为统计学的还蛮好的, SPSS傻瓜式操作,上手挺方便,可渐渐地发现,使用软件的最不好的地方是不够灵活, ...

  7. python中的矩阵、多维数组

    2. 创建一般的多维数组 import numpy as np a = np.array([1,2,3], dtype=int)  # 创建1*3维数组   array([1,2,3]) type(a ...

  8. python中numpy库的一些使用

    想不用第三方库实现点深度学习的基础部分,发现numpy真的好难(笑),在此做点遇到的函数的笔记 惯例官方文档:https://docs.scipy.org/doc/numpy-1.16.1/refer ...

  9. 42-python中的矩阵、多维数组----numpy

    xzcfightingup   python中的矩阵.多维数组----numpy 1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易, ...

随机推荐

  1. map2bean & bean2map

    1,自己实现: /** * @author xx * @since 2020/7/8 */ @Slf4j public class JavaBeanUtils { /** * 实体类转map * 效率 ...

  2. Spring 为啥默认把bean设计成单例的?

    熟悉Spring开发的朋友都知道Spring提供了5种scope分别是singleton.prototype.request.session.global session. 如下图是官方文档上的截图, ...

  3. [后端及服务器][WSL2(Ubuntu)+Docker]从零开始在WSL中安装Docker

    目录 简介 WSL 安装 开启虚拟化(BIOS) 检查系统版本 安装WSL 老版本安装详情 简介 想花三篇文章写下从Windows(WSL)上开启Docker部署php/node/vue/html等项 ...

  4. UE4中C++编程(一)

    一: C++工程和Gameplay框架 GameInstance 它适合放置独立于关卡的信息,比如说显示UI. GameMode 表示游戏玩法, 包含游戏进行的规则和胜利条件等等信息,游戏模式是和关卡 ...

  5. Django笔记&教程 总目录

    本篇博客只有目录,正文内容在目录章节链接的博客里 除目录本身外,没有链接的章节,说明内容还没开始编辑 本项目笔记仍在不断创作中,还有些内容会根据自身所学不断更新完善 本项目主要为markdwon文档, ...

  6. b站个人直播年报【大爽歌作】 介绍与演示

    大家好,我是大爽,一个b站UP主兼主播. 最近做了一个b站直播个人年报,该年报为代码文件生成. 且代码已打包到一个可视化工具中(exe)只需两步就可以获得自己的专属年报. 代码已上传到我的github ...

  7. R数据分析:生存分析与有竞争事件的生存分析的做法和解释

    今天被粉丝发的文章给难住了,又偷偷去学习了一下竞争风险模型,想起之前写的关于竞争风险模型的做法,真的都是皮毛哟,大家见笑了.想着就顺便把所有的生存分析的知识和R语言的做法和论文报告方法都给大家梳理一遍 ...

  8. [cf461D]Appleman and Complicated Task

    假设该矩形是aij,那么有a(i,j)=a(i-1,j-1)^a(i-1,j+1)^a(i-2,j),不断递归下去可以发现a(i,j)=a(1,y-x+1)^a(1,y-x+3)^--^a(1,x+y ...

  9. RestSharp使用说明

    翻译自:https://github.com/restsharp/RestSharp/wiki,转载请注明. 一.新手入门 如果只有少量一次性请求需要封装为API,则可以如下使用RestSharp : ...

  10. Python 3 快速入门 2 —— 流程控制与函数

    本文假设你已经有一门面向对象编程语言基础,如Java等,且希望快速了解并使用Python语言.本文对重点语法和数据结构以及用法进行详细说明,同时对一些难以理解的点进行了图解,以便大家快速入门.一些较偏 ...