适用于CUDA GPU的Numba 随机数生成
适用于CUDA GPU的Numba 随机数生成
随机数生成
Numba提供了可以在GPU上执行的随机数生成算法。由于NVIDIA如何实现cuRAND的技术问题,Numba的GPU随机数生成器并非基于cuRAND。相反,Numba的GPU RNG是xoroshiro128 +算法的实现。xoroshiro128 +算法的周期为2**128 - 1,比cuRAND中默认使用的XORWOW算法的周期短,但是xoroshiro128 +算法仍然通过了随机数发生器质量的BigCrush测试。
在GPU上使用任何RNG时,重要的是要确保每个线程都有其自己的RNG状态,并且它们已初始化为产生不重叠的序列。numba.cuda.random模块提供了执行此操作的主机功能,以及提供统一或正态分布的随机数的CUDA设备功能。
注意
Numba (like cuRAND) uses the Box-Muller transform <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>从统一生成器生成正态分布的随机数。但是,Box-Muller生成随机数对,当前实现只返回其中之一。结果,生成正态分布的值是均匀分布的值的速度的一半。
numba.cuda.random.create_xoroshiro128p_states
(n, seed, subsequence_start=0, stream=0)
返回为n个随机数生成器初始化的新设备数组。
这将初始化RNG状态,以便数组中的每个状态与主序列中彼此分开2 ** 64步的子序列相对应。因此,只要没有CUDA线程请求超过2 ** 64个随机数,就可以保证此函数产生的所有RNG状态都是独立的。
subsequence_start参数可用于将第一个RNG状态提前2 ** 64步的倍数。
参数: |
|
numba.cuda.random.init_xoroshiro128p_states
(states, seed, subsequence_start=0, stream=0)
在GPU上为并行生成器初始化RNG状态。
这将初始化RNG状态,以便数组中的每个状态与主序列中彼此分开2 ** 64步的子序列相对应。因此,只要没有CUDA线程请求超过2 ** 64个随机数,就可以保证此函数产生的所有RNG状态都是独立的。
subsequence_start参数可用于将第一个RNG状态提前2 ** 64步的倍数。
参数: |
|
numba.cuda.random.xoroshiro128p_uniform_float32
返回范围为[0.0,1.0)的float32并前进states[index]。
参数: |
|
返回类型: |
float32 |
numba.cuda.random.xoroshiro128p_uniform_float64
返回范围为[0.0,1.0)的float64并前进states[index]。
参数: |
|
返回类型: |
float64 |
numba.cuda.random.xoroshiro128p_normal_float32
返回正态分布的float32并前进states[index]。
使用Box-Muller变换从平均值= 0和sigma = 1的高斯中得出返回值。这使RNG序列前进了两个步骤。
参数: |
|
返回类型: |
float32 |
numba.cuda.random.xoroshiro128p_normal_float64
返回正态分布的float32并前进states[index]。
使用Box-Muller变换从平均值= 0和sigma = 1的高斯中得出返回值。这使RNG序列前进了两个步骤。
参数: |
|
返回类型: |
float64 |
例
这是使用随机数生成器的示例程序:
from __future__ import print_function, absolute_import
from numba import cuda
from numba.cuda.random import create_xoroshiro128p_states, xoroshiro128p_uniform_float32
import numpy as np
@cuda.jit
def compute_pi(rng_states, iterations, out):
"""Find the maximum value in values and store in result[0]"""
thread_id = cuda.grid(1)
# Compute pi by drawing random (x, y) points and finding what
# fraction lie inside a unit circle
inside = 0
for i in range(iterations):
x = xoroshiro128p_uniform_float32(rng_states, thread_id)
y = xoroshiro128p_uniform_float32(rng_states, thread_id)
if x**2 + y**2 <= 1.0:
inside += 1
out[thread_id] = 4.0 * inside / iterations
threads_per_block = 64
blocks = 24
rng_states = create_xoroshiro128p_states(threads_per_block * blocks, seed=1)
out = np.zeros(threads_per_block * blocks, dtype=np.float32)
compute_pi[blocks, threads_per_block](rng_states, 10000, out)
print('pi:', out.mean())
适用于CUDA GPU的Numba 随机数生成的更多相关文章
- 适用于CUDA GPU的Numba例子
适用于CUDA GPU的Numba例子 矩阵乘法 这是使用CUDA内核的矩阵乘法的简单实现: @cuda.jit def matmul(A, B, C): """Perf ...
- 适用于AMD ROC GPU的Numba概述
适用于AMD ROC GPU的Numba概述 Numba通过按照HSA执行模型将Python代码的受限子集直接编译到HSA内核和设备功能中,从而支持AMD ROC GPU编程.用Numba编写的内核似 ...
- NVIDIA GPU上的随机数生成
NVIDIA GPU上的随机数生成 NVIDIA CUDA随机数生成库(cuRAND)提供高性能的GPU加速的随机数生成(RNG).cuRAND库使用NVIDIA GPU中提供的数百个处理器内核,将质 ...
- Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍
xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...
- CUDA ---- GPU架构(Fermi、Kepler)
GPU架构 SM(Streaming Multiprocessors)是GPU架构中非常重要的部分,GPU硬件的并行性就是由SM决定的. 以Fermi架构为例,其包含以下主要组成部分: CUDA co ...
- 奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练
1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,i ...
- CUDA && GPU中dim3介绍
- 布客·ApacheCN 翻译/校对/笔记整理活动进度公告 2020.1
注意 请贡献者查看参与方式,然后直接在 ISSUE 中认领. 翻译/校对三个文档就可以申请当负责人,我们会把你拉进合伙人群.翻译/校对五个文档的贡献者,可以申请实习证明. 请私聊片刻(52981514 ...
- 真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)【转】
本文转载自:https://blog.csdn.net/u010801439/article/details/80483036 ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前, ...
随机推荐
- css单位介绍em ex ch rem vw vh vm cm mm in pt pc px
长度单位主要有以下几种em ex ch rem vw vh vm cm mm in pt pc px %,大概可以分为几种"绝对单位"和"相对单位"和" ...
- hdu4560 不错的建图,二分最大流
题意: 我是歌手 Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Subm ...
- drozer浅析三:命令实现与交互
前面走马观花的看了几个模块的源码,看到是用python(会加载自定义的java类)写的.产生2个问题:在命令行中输入command,drozer是如何去执行的:python是如何与java交互的. d ...
- jQuery数组($.grep,$.each,$.inArray,$.map)处理函数详解
1.jQuery.grep( array, function(elementOfArray, indexInArray) [, invert ] ) 描述: 查找满足过滤函数的数组元素.原始数组不受影 ...
- 【JavaScript】【KMP】Leetcode每日一题-实现strStr()
[JavaScript]Leetcode每日一题-实现strStr() [题目描述] 实现 strStr() 函数. 给你两个字符串 haystack 和 needle ,请你在 haystack 字 ...
- 联想R720Y空间问题
由于之前Y空间在启动项中,所以将他关闭,这次想找到他却找不到 备注:因为在解决问题前,没有把图片保存下来,所以下面用一个颜色框挡住,表示之前的效果 第一个问题 在电脑上找到Y空间 百度上很多说在开始中 ...
- Mac/Win录屏工具推荐-LICEcap
轻小.便捷.操作简单 下载 LICEcap v1.30 for macOS LICEcap v1.28 for Windows 参考地址
- maven简单入门
maven简单部署webapp项目流程及注意事项 maven了解 简介: Maven 是一个项目管理工具,它包含了一个项目对象模型 (POM: Project Object Model),一组标准集合 ...
- Java on Visual Studio Code的更新 – 2021年4月
杨尧今 from Microsoft VS Code Java Team 欢迎来到这一期的VS Code Java更新.又是一个忙碌而富有成效的月份. Java调试器和Java测试扩展获得了新功能.在 ...
- 《前端运维》一、Linux基础--03Shell基础及补充
诶诶欸?不是学Linux么?怎么要讲shell了?shell是啥?啥是shell? 别急,我们先简单了解下shell是什么.Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁. ...