题面链接

洛谷

sol

唯一的重点是拆边。。。

0的不管,只看1、2。

先无论如何把两条边的边权赋为\(0.5\)然后我们发现如果两个都选了。

对于第一种边,我们发现如果\(\frac{1}{2} * \frac{1}{2}=\frac{1}{4}\),但我们实际上需要的是\(\frac{1}{2}\)所以我们连一条两条边都在内的边,权值为\(\frac{1}{4}\)

同理,第二种就是\(-\frac{1}{4}\)

然后就是状压\(dp\)

#include<map>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define gt getchar()
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
inline int in()
{
int k=0;char ch=gt;
while(ch<'-')ch=gt;
while(ch>'-')k=k*10+ch-'0',ch=gt;
return k;
}
const int YL=1e9+7,inv2=5e8+4,inv4=2.5e8+2;
inline int MO(const int &a){return a>=YL?a-YL:a;}
std::map<int,int>f[1<<16];
#define mk(x,y) ((1<<(x-1))|(1<<(y+n-1)))
int S[1<<16],v[1<<16],cnt,n,m;
int dp(int S_now)
{
if(!S_now)return 1;
int T_0=S_now>>n,S_0=S_now&((1<<n)-1);
if(f[T_0].count(S_0))return f[T_0][S_0];
int &res=f[T_0][S_0];
for(int i=1;i<=cnt;++i)
{
int T=S[i];
if((S_now|T)==S_now&&S_now<(T<<1))
res=MO(res+1ll*dp(S_now^T)*v[i]%YL);
}
return res;
}
int main()
{
n=in(),m=in();
for(int i=1;i<=m;++i)
{
int op=in(),x=in(),y=in();
int S1=mk(x,y);S[++cnt]=S1,v[cnt]=inv2;
if(op)
{
x=in(),y=in();
int S2=S[++cnt]=mk(x,y);v[cnt]=inv2;
if(S[cnt]&S1)continue;
S[++cnt]=S1|S2;
v[cnt]=(op==1?inv4:YL-inv4);
}
}
printf("%lld\n",(1ll<<n)*dp((1<<2*n)-1)%YL);
return 0;
}

THUWC2017随机二分图的更多相关文章

  1. [THUWC2017]随机二分图

    题目大意 给一张二分图,有左部点和右部点. 有三种边,第一种是直接从左部点连向右部点,出现概率为50%. 第二种边一组里有两条边,这两条边同时出现或者不出现,概率都是50%. 第三种边一组里有两条边, ...

  2. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  3. BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)

    下称0类为单边,1类为互生边,2类为互斥边.对于一种匹配方案,考虑其出现的概率*2n后对答案的贡献,初始为1,如果有互斥边显然变为0,否则每有一对互生边其贡献*2.于是有一个显然的dp,即设f[S1] ...

  4. [BZOJ5006][LOJ#2290][THUWC2017]随机二分图(概率+状压DP)

    https://loj.ac/problem/2290 题解:https://blog.csdn.net/Vectorxj/article/details/78905660 不是很好理解,对于边(x1 ...

  5. [LOJ2290] [THUWC2017] 随机二分图

    题目链接 LOJ:https://loj.ac/problem/2290 洛谷:https://www.luogu.org/problemnew/show/P4547 Solution 首先考虑只有第 ...

  6. [思路题][LOJ2290][THUWC2017]随机二分图:状压DP+期望DP

    分析 考虑状压DP,令\(f[sta]\)表示已匹配状态是\(sta\)(\(0\)代表已匹配)时完美匹配的期望数量,显然\(f[0]=1\). 一条边出现了不代表它一定在完美匹配内,这也导致很难去直 ...

  7. P4547 [THUWC2017]随机二分图(状压,期望DP)

    期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...

  8. 题解 洛谷 P4547 【[THUWC2017]随机二分图】

    根据题意,题目中所求的即为所有\(n!\)种完美匹配的各自的出现概率之和再乘上\(2^n\)的值. 发现\(n\)很小,考虑状压\(DP\).设\(f_{S,T}\)为左部图匹配情况为\(S\),右部 ...

  9. 【THUWC2017】随机二分图(动态规划)

    [THUWC2017]随机二分图(动态规划) 题面 BZOJ 洛谷 题解 如果每天边的限制都是\(0.5\)的概率出现或者不出现的话,可以把边按照二分图左侧的点的编号排序,然后设\(f[i][S]\) ...

随机推荐

  1. Mac os x 配置maven

    安装Maven 1.压缩包apache-maven-3.3.9-bin.zip 2.解压压缩包到指定文件 3.打开终端,输入以下命令,编辑环境变量文件:bash_proflie open .bash_ ...

  2. Unity3D Shader 学习笔记(二):ShaderLab的结构和基本属性

    (一) ShaderLab: 什么是ShaderLab: Unity3D支持的Shader种类包括: 1.Surface Shader:表面着色器 2.Vertex & Fragment Sh ...

  3. webpack3升级为webpack4

    写在前面的话:为什么要升级,因为公司目前的项目使用webpack3,但是因为是多页应用,入口估计有一百多个,开发模式下慢得不像话,修改一个文件需要十几秒才编译好,之前的解决方案是减少入口,但是要调试其 ...

  4. Redis初探(windows/linux安装)

    最近在学习Redis,先看看简介: Redis 是完全开源免费的,遵守BSD协议(可以自由的使用,修改源代码的协议,当然需要满足一定的条件),是一个高性能的key-value数据库. 特点&& ...

  5. CHAPTER 38 Reading ‘the Book of Life’ The Human Genome Project 第38章 阅读生命之书 人体基因组计划

    CHAPTER 38 Reading ‘the Book of Life’ The Human Genome Project 第38章 阅读生命之书 人体基因组计划 Humans have about ...

  6. 六大iT公司的组织结构

  7. Prometheus 添加报警规则

    https://prometheus.io/docs/prometheus/latest/migration/

  8. js循环复制一个div

    <html> <head> <title>Test of cloneNode Method</title> <script type=" ...

  9. kafka启动报错:另一个程序正在使用此文件,进程无法访问。

    在Windows上启动kafka_2.12-1.1.0报以下错误:[2018-05-08 10:24:51,777] ERROR Failed to clean up log for __consum ...

  10. Daily Scrum 11.19 部分测试报告

    下面是我们的部分测试报告: 功能测试部分: 1Exception in thread "Thread-11" java.lang.IllegalArgumentException: ...