题目描述

给定一个标号为从 \(1\) 到 \(n\) 的、有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树。

输入输出格式

输入格式:

第一行两个数 \(n, m\) ,表示图的点和边的数量。

第二行起 \(m\) 行,每行形如 \(u_i, v_i, w_i\)​ ,代表 \(u_i\)​ 到 \(v_i\)​ 间有一条长为 \(w_i\)​ 的无向边。

输出格式:

输出一行一个整数,代表你的答案。

数据保证存在至少一棵生成树。

输入输出样例

输入样例#1:

4 6

1 2 10

1 3 100

1 4 90

2 3 20

2 4 80

3 4 40

输出样例#1:

20

说明

对于 30% 的数据,满足 \(1 \leq n \leq 100, 1 \leq m \leq 1000\)

对于 97% 的数据,满足 \(1 \leq n \leq 500, 1 \leq m \leq 100000\)

对于 100% 的数据,满足 \(1 \leq n \leq 50000, 1 \leq m \leq 200000, 1 \leq w_i \leq 10000\)

题解

LCT

先从对边按边权大到小排序

然后,朴素地看,我们枚举每条边,以它的权值作为生成树的最小值,最优答案是多少。显然,如果我们确定了下界,那么上界一定是以下界为最小值的MST中的最大值。所以,枚举了最小值,那么对于它的最优答案就是所有边权大于这个最小值的边组成的图的MST中的边权的最大值减去枚举的这个最小值。

由于已经从大到小排好序了,那么就直接不断加边,用LCT维护MST就行了

那么对于每一次枚举,都要找一次整个MST的最大值,这个用LCT做不到,那就直接用一个数组存某条边是否在MST中,再用一个指针一直指向最前面的存在于MST中的边就行了

当然,边权从小到大排序也可做,过程是一样的

从小到大,维护最大生成树

从大到小,维护最小生成树

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=50000+10,MAXM=200000+10,inf=0x3f3f3f3f;
int n,m,fa[MAXN],in[MAXM],ip=1,ans=inf;
struct edge{
int u,v,w;
inline bool operator < (const edge &A) const {
return w>A.w;
};
};
edge side[MAXM];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN+MAXM][2],fa[MAXN+MAXM],rev[MAXN+MAXM],Mx[MAXN+MAXM],id[MAXN+MAXM],stack[MAXN+MAXM],cnt,val[MAXN+MAXM];
inline void init()
{
memset(ch,0,sizeof(ch));
memset(fa,0,sizeof(fa));
memset(Mx,0,sizeof(Mx));
memset(id,0,sizeof(id));
memset(val,0,sizeof(val));
memset(rev,0,sizeof(rev));
}
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void pushup(int x)
{
Mx[x]=val[x];id[x]=x;
if(Mx[lc(x)]>Mx[x])Mx[x]=Mx[lc(x)],id[x]=id[lc(x)];
if(Mx[rc(x)]>Mx[x])Mx[x]=Mx[rc(x)],id[x]=id[rc(x)];
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
while(cnt)pushdown(stack[cnt--]);
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
}
inline int findroot(int x)
{
access(x);splay(x);
while(lc(x))pushdown(x),x=lc(x);
splay(x);
return x;
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);
if(findroot(y)!=x)fa[x]=y;
}
inline void cut(int x,int y)
{
makeroot(x);
if(findroot(y)==x&&fa[y]==x&&!rc(y))fa[y]=lc(x)=0,pushup(x);
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
int main()
{
read(n);read(m);
for(register int i=1;i<=n;++i)fa[i]=i;
for(register int i=1;i<=m;++i)read(side[i].u),read(side[i].v),read(side[i].w);
int dn=0;
std::sort(side+1,side+m+1);
for(register int i=1;i<=m;++i)
{
int x=found(side[i].u),y=found(side[i].v),sn=n+i;
if(x!=y)
{
fa[x]=y;
T.val[sn]=side[i].w;
T.link(sn,side[i].u),T.link(sn,side[i].v);
in[i]=1;
dn++;
}
else
{
if(side[i].u==side[i].v)continue;
T.split(side[i].u,side[i].v);
int so=T.id[side[i].v];
if(side[i].w<T.Mx[side[i].v])
{
T.val[sn]=side[i].w;
T.cut(so,side[so-n].u);T.cut(so,side[so-n].v);
in[so-n]=0;
T.link(sn,side[i].u);T.link(sn,side[i].v);
in[i]=1;
}
}
if(dn==n-1)
{
while(!in[ip])ip++;
T.split(side[i].u,side[i].v);
chkmin(ans,side[ip].w-side[i].w);
}
}
write(ans,'\n');
return 0;
}

【刷题】洛谷 P4234 最小差值生成树的更多相关文章

  1. 洛谷P4234 最小差值生成树(LCT,生成树)

    洛谷题目传送门 和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分) 至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最 ...

  2. [洛谷P4234] 最小差值生成树

    题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:求一棵生成树,其最大边权减最小边权最小 解题思路 和魔法森林非常像.先对所有边进行排序,每次加边的时候删除环上的最小 ...

  3. 洛谷P4234 最小差值生成树(lct动态维护最小生成树)

    题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式:   第一行两个数 n, mn,m ,表示图的点和边的数量. ...

  4. 洛谷 P4234 最小差值生成树(LCT)

    题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...

  5. 洛谷.4234.最小差值生成树(LCT)

    题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树 ...

  6. 洛谷4234最小差值生成树 (LCT维护生成树)

    这也是一道LCT维护生成树的题. 那么我们还是按照套路,先对边进行排序,然后顺次加入. 不过和别的题有所不同的是: 在本题中,我们需要保证LCT中正好有\(n-1\)条边的时候,才能更新\(ans\) ...

  7. P4234 最小差值生成树

    题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...

  8. P4234 最小差值生成树 LCT维护边权

    \(\color{#0066ff}{ 题目描述 }\) 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. \(\color{#0 ...

  9. 【Luogu】P4234最小差值生成树(LCT)

    题目链接 能把LCT打得每个函数都恰有一个错误也是挺令我惊讶的. 本题使用LCT维护生成树,具体做法是对原图中的每个边建一个点,然后连边的时候相当于是将边的起点跟“边”这个点连起来,边的终点也跟它连起 ...

随机推荐

  1. Jenkins自动化测试

    Jenkins自动化测试 一个持续集成的基本原则是构建应该是可验证的.你必须能够客观地确定一个特定的构建是否准备就绪构建过程的下一个阶段,最便捷的方式做到这一点是使用自动化测试.如果没有适当的自动化测 ...

  2. log4cpp简单使用及踩到的坑

    log4cpp是log4j的一个扩展, C++开发者可用该库记录日志,可输出到终端,亦可保存到文件. 下面简单demo展示如何输出日志到输出终端. #include <iostream> ...

  3. java事务 深入Java事务的原理与应用

    一.什么是JAVA事务 通常的观念认为,事务仅与数据库相关. 事务必须服从ISO/IEC所制定的ACID原则.ACID是原子性(atomicity).一致性(consistency).隔离性 (iso ...

  4. 网格系统-bootStrap4常用CSS笔记

    .row 定义一行 .col 均分列数,最多一行12列.每列左右间隙各15px .col-{1到12} 定义在所有屏幕下的列宽 .col-{sm|md|lg|xl}-{1到12} 定义在指定屏幕下该列 ...

  5. 学习笔记 | treap | splay

    目录 前言 treap 它的基本操作 前言 不会数据结构选手深深地感受到了来自treap的恶意QwQ 在听的时候感觉自己听得听懂的??大概只是听懂了它的意思 代码是怎么写都感觉写不好╮(╯﹏╰)╭ 菜 ...

  6. 虚拟机搭建Hadoop集群

    安装包准备 操作系统:ubuntu-16.04.3-desktop-amd64.iso 软件包:VirtualBox 安装包:hadoop-3.0.0.tar.gz,jdk-8u161-linux-x ...

  7. django_models_Meta字段详解

    Django模型类的Meta是一个内部类,它用于定义一些Django模型类的行为特性.而可用的选项大致包含以下几类 abstract 这个属性是定义当前的模型是不是一个抽象类.所谓抽象类是不会对应数据 ...

  8. TeamWork#3,Week5,The First Meeting of Our Team

    sixsix第一次会议记录 [会议时间]2014年10月23日星期四19:00-20:00 [会议形式]小组讨论 [会议地点]5号公寓 [会议主持]高雅智 [会议记录]张志浩 会议整体流程 一.签到 ...

  9. 迎来OO的曙光,总结规格的意义——OO第四次博客总结

    一切都要结束了,砥砺前行~ 一.测试与正确性论证的效果差异 测试,顾名思义就是我们暴力用大量数据轰炸编写的程序的过程.日常的OO过程中,我们经常互相寻求“测试集”,正是因为测试使用特定数据对我们的功能 ...

  10. Java第一次试验

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计   班级:1352       姓名:朱国庆   学号:20135237 成绩:             ...