【刷题】洛谷 P4234 最小差值生成树
题目描述
给定一个标号为从 \(1\) 到 \(n\) 的、有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树。
输入输出格式
输入格式:
第一行两个数 \(n, m\) ,表示图的点和边的数量。
第二行起 \(m\) 行,每行形如 \(u_i, v_i, w_i\) ,代表 \(u_i\) 到 \(v_i\) 间有一条长为 \(w_i\) 的无向边。
输出格式:
输出一行一个整数,代表你的答案。
数据保证存在至少一棵生成树。
输入输出样例
输入样例#1:
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
输出样例#1:
20
说明
对于 30% 的数据,满足 \(1 \leq n \leq 100, 1 \leq m \leq 1000\)
对于 97% 的数据,满足 \(1 \leq n \leq 500, 1 \leq m \leq 100000\)
对于 100% 的数据,满足 \(1 \leq n \leq 50000, 1 \leq m \leq 200000, 1 \leq w_i \leq 10000\)
题解
LCT
先从对边按边权大到小排序
然后,朴素地看,我们枚举每条边,以它的权值作为生成树的最小值,最优答案是多少。显然,如果我们确定了下界,那么上界一定是以下界为最小值的MST中的最大值。所以,枚举了最小值,那么对于它的最优答案就是所有边权大于这个最小值的边组成的图的MST中的边权的最大值减去枚举的这个最小值。
由于已经从大到小排好序了,那么就直接不断加边,用LCT维护MST就行了
那么对于每一次枚举,都要找一次整个MST的最大值,这个用LCT做不到,那就直接用一个数组存某条边是否在MST中,再用一个指针一直指向最前面的存在于MST中的边就行了
当然,边权从小到大排序也可做,过程是一样的
从小到大,维护最大生成树
从大到小,维护最小生成树
#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=50000+10,MAXM=200000+10,inf=0x3f3f3f3f;
int n,m,fa[MAXN],in[MAXM],ip=1,ans=inf;
struct edge{
int u,v,w;
inline bool operator < (const edge &A) const {
return w>A.w;
};
};
edge side[MAXM];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN+MAXM][2],fa[MAXN+MAXM],rev[MAXN+MAXM],Mx[MAXN+MAXM],id[MAXN+MAXM],stack[MAXN+MAXM],cnt,val[MAXN+MAXM];
inline void init()
{
memset(ch,0,sizeof(ch));
memset(fa,0,sizeof(fa));
memset(Mx,0,sizeof(Mx));
memset(id,0,sizeof(id));
memset(val,0,sizeof(val));
memset(rev,0,sizeof(rev));
}
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void pushup(int x)
{
Mx[x]=val[x];id[x]=x;
if(Mx[lc(x)]>Mx[x])Mx[x]=Mx[lc(x)],id[x]=id[lc(x)];
if(Mx[rc(x)]>Mx[x])Mx[x]=Mx[rc(x)],id[x]=id[rc(x)];
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
while(cnt)pushdown(stack[cnt--]);
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
}
inline int findroot(int x)
{
access(x);splay(x);
while(lc(x))pushdown(x),x=lc(x);
splay(x);
return x;
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);
if(findroot(y)!=x)fa[x]=y;
}
inline void cut(int x,int y)
{
makeroot(x);
if(findroot(y)==x&&fa[y]==x&&!rc(y))fa[y]=lc(x)=0,pushup(x);
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
int main()
{
read(n);read(m);
for(register int i=1;i<=n;++i)fa[i]=i;
for(register int i=1;i<=m;++i)read(side[i].u),read(side[i].v),read(side[i].w);
int dn=0;
std::sort(side+1,side+m+1);
for(register int i=1;i<=m;++i)
{
int x=found(side[i].u),y=found(side[i].v),sn=n+i;
if(x!=y)
{
fa[x]=y;
T.val[sn]=side[i].w;
T.link(sn,side[i].u),T.link(sn,side[i].v);
in[i]=1;
dn++;
}
else
{
if(side[i].u==side[i].v)continue;
T.split(side[i].u,side[i].v);
int so=T.id[side[i].v];
if(side[i].w<T.Mx[side[i].v])
{
T.val[sn]=side[i].w;
T.cut(so,side[so-n].u);T.cut(so,side[so-n].v);
in[so-n]=0;
T.link(sn,side[i].u);T.link(sn,side[i].v);
in[i]=1;
}
}
if(dn==n-1)
{
while(!in[ip])ip++;
T.split(side[i].u,side[i].v);
chkmin(ans,side[ip].w-side[i].w);
}
}
write(ans,'\n');
return 0;
}
【刷题】洛谷 P4234 最小差值生成树的更多相关文章
- 洛谷P4234 最小差值生成树(LCT,生成树)
洛谷题目传送门 和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分) 至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最 ...
- [洛谷P4234] 最小差值生成树
题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:求一棵生成树,其最大边权减最小边权最小 解题思路 和魔法森林非常像.先对所有边进行排序,每次加边的时候删除环上的最小 ...
- 洛谷P4234 最小差值生成树(lct动态维护最小生成树)
题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 n, mn,m ,表示图的点和边的数量. ...
- 洛谷 P4234 最小差值生成树(LCT)
题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...
- 洛谷.4234.最小差值生成树(LCT)
题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树 ...
- 洛谷4234最小差值生成树 (LCT维护生成树)
这也是一道LCT维护生成树的题. 那么我们还是按照套路,先对边进行排序,然后顺次加入. 不过和别的题有所不同的是: 在本题中,我们需要保证LCT中正好有\(n-1\)条边的时候,才能更新\(ans\) ...
- P4234 最小差值生成树
题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...
- P4234 最小差值生成树 LCT维护边权
\(\color{#0066ff}{ 题目描述 }\) 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. \(\color{#0 ...
- 【Luogu】P4234最小差值生成树(LCT)
题目链接 能把LCT打得每个函数都恰有一个错误也是挺令我惊讶的. 本题使用LCT维护生成树,具体做法是对原图中的每个边建一个点,然后连边的时候相当于是将边的起点跟“边”这个点连起来,边的终点也跟它连起 ...
随机推荐
- Hyperledger Fabric -- gossip 协议
Hyperledger gossip 本文记述了Hyperledger Fabric 中 一种网络数据同步协议--gossip,它的主要作用是致力于账本数据的安全传输,保证不同节点之间状态的同步和 ...
- python-模拟掷骰子,两个筛子数据可视化
""" 作者:zxj 功能:模拟掷骰子,两个筛子数据可视化 版本:3.0 日期:19/3/24 """ import random impo ...
- 浏览器差异bug汇总(js篇)
获取滚动条高度 var scrollTop = document.body.scrollTop || document.documentElement.scrollTop; safari浏览器时间函数 ...
- psp报告
1.读材料回答问题 (1)回想一下你曾经对计算机专业的畅想.当初你是如何做出选择计算机专业的决定的?你认为过去接触到的课程是否符合你对计算机专业的期待,为什么?你觉得计算机是你喜欢的领域吗,它是你擅长 ...
- jsp九大内置对象之config 和 out
jsp中config的作用是读取web.xml中的配置信息,一般在后台获取初始化的参数,jsp页面用的较少因为jsp属于表现层,一般是获取数据. jsp中的out对象是将内容放到缓冲区中然后显示出来
- c#学习路线及目录导航
一 很久前的想法 转眼间,2018年已经过了四分之一,从我进入学校选择计算机专业到现在工作,已经过去了4年之久了.这一路走来经历了很多的曲折,对软件开发这个职业有了许多新的认识,我主要是从事NET领域 ...
- HDU 4568 Hunter 最短路+TSP
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 Hunter Time Limit: 2000/1000 MS (Java/Others)Me ...
- 【CSAPP笔记】4. 汇编语言——基础知识
程序的机器级表示 计算机能读懂是机器代码(machine code)-- 用字节序列编码的低级操作 -- 也就是0和1.编译器基于编程语言的规则.目标机器的指令集和操作系统的规则,经过一系列阶段产生机 ...
- Eclipse下高亮显示Freemarker文件
让eclipse高亮显示freemarker文件有两种方式,一种是安装JBoss的插件,一种是用JSP编辑器打开freemarker的文件.我使用第二种方式来完成. 打开eclipse,点击windo ...
- java下Mysql基本操作
https://www.cnblogs.com/centor/p/6142775.html