Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.  For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.  You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.  Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3.  For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2.  Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题目意思:有n种货币,货币之间按照汇率交换,当然还要花费一些手续费,货币交换是可以多次重复进行的,问有没有可能经过一系列的货币交换,开始的货币会增加?
当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。
解题思路:这道题可以抽象为图论中的题,将货币种类看为点,货币之间的交换看为有向边,想要货币的金额产生增加,那么必然要有正权回路,即在一条回路上能够一直松弛下去。该题的问题主要在于所给的参数很多,第一行给出了n种货币有m种交换方式,给你第s种货币有V的金额,对于m种的交换方式,从x到y需要汇率rate和手续费commission,从y到x也需要这两个参数。同时这里的松弛递推公式也要发生变化:
            if(dist[edge[i].t]<(dist[edge[i].f]-edge[i].c)*edge[i].r)
{
dist[edge[i].t]=(dist[edge[i].f]-edge[i].c)*edge[i].r;
}
因为是需要增加的正权回路,所以如果小于就松弛。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
struct Edge
{
int f;
int t;
double r;
double c;
} edge[];
double dist[];
int n,m,s,cnt;
double x;
int bellman_ford()
{
int i,j;
int flag;
for(i=; i<=n; i++)
{
dist[i]=;
}
dist[s]=x;
for(j=; j<=n; j++)
{
flag=;
for(i=; i<=cnt; i++)
{
if(dist[edge[i].t]<(dist[edge[i].f]-edge[i].c)*edge[i].r)
{
dist[edge[i].t]=(dist[edge[i].f]-edge[i].c)*edge[i].r;
flag=;
}
}
if(flag==)
{
break;
}
}
return flag;
}
int main()
{
int i,t;
int u,v;
double a1,a2,b1,b2;
while(scanf("%d%d%d%lf",&n,&m,&s,&x)!=EOF)
{
cnt=;
while(m--)
{
scanf("%d%d%lf%lf%lf%lf",&u,&v,&a1,&b1,&a2,&b2);
edge[cnt].f=u;
edge[cnt].t=v;
edge[cnt].r=a1;
edge[cnt++].c=b1;
edge[cnt].f=v;
edge[cnt].t=u;
edge[cnt].r=a2;
edge[cnt++].c=b2;
}
if(bellman_ford())
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return ;
}

附上使用SPFA的代码

#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxs = 1e3+;
int n,m;
struct Edge
{
int to;
double rate;
double com;
} ;
double dis[maxs];
int vis[maxs];
int cnt[maxs];///用来记录入队列次数
vector<Edge>maps[maxs];
void AddEdge(int u,int v,double r,double co)
{
Edge t;
t.to=v;
t.rate=r;
t.com=co;
maps[u].push_back(t);
}
int SPFA(int s, double v)
{
int i;
memset(dis,,sizeof());
memset(vis,,sizeof());
memset(cnt,,sizeof());
queue<int>q;
dis[s]=v;
vis[s]=;
cnt[s]++;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=;
for(i=; i<maps[u].size(); i++)
{
int to=maps[u][i].to;
double com=maps[u][i].com;
double rate=maps[u][i].rate;
if(dis[to]<(dis[u]-com)*rate)
{
dis[to]=(dis[u]-com)*rate;
if(!vis[to])
{
vis[to]=;
cnt[to]++;
if(cnt[to]>=n)
{
return ;
}
q.push(to);
}
}
}
}
return ;
}
int main()
{
int s,i;
double k;
while(scanf("%d%d%d%lf",&n,&m,&s,&k)!=EOF)
{
int a,b;
double c,d,e,f;
while(m--)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f);
AddEdge(a,b,c,d);
AddEdge(b,a,e,f);
}
if(SPFA(s,k))
{
puts("YES");
}
else
{
puts("NO");
}
}
return ;
}


Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路的更多相关文章

  1. poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)

    链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...

  2. Currency Exchange POJ - 1860 (spfa判断正环)

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  3. POJ1680 Currency Exchange SPFA判正环

    转载来源:優YoU  http://user.qzone.qq.com/289065406/blog/1299337940 提示:关键在于反向利用Bellman-Ford算法 题目大意 有多种汇币,汇 ...

  4. 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 711 ...

  5. POJ 1860 Currency Exchange(最短路&spfa正权回路)题解

    题意:n种钱,m种汇率转换,若ab汇率p,手续费q,则b=(a-q)*p,你有第s种钱v数量,问你能不能通过转化让你的s种钱变多? 思路:因为过程中可能有负权值,用spfa.求是否有正权回路,dis[ ...

  6. POJ1860-Currency Exchange (正权回路)【Bellman-Ford】

    <题目链接> <转载于 >>> > 题目大意: 有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0. ...

  7. HDU - 1317 ~ SPFA正权回路的判断

    题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...

  8. Bellman_ford货币兑换——正权回路判断

    POJ1860 题目大意:你在某一点有一些钱,给定你两点之间钱得兑换规则,问你有没有办法使你手里的钱增多.就是想看看转一圈我的钱能不能增多,出现这一点得条件就是有兑换钱得正权回路,所以选择用bellm ...

  9. [ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)

    Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to tr ...

随机推荐

  1. 开源 免费 java CMS - FreeCMS1.9 全文检索

    项目地址:http://code.google.com/p/freecms/ 全文检索 从FreeCMS 1.7開始支持 仅仅有创建过索引的对象才干被lucene类标签查询到. 信息类数据会在信息更新 ...

  2. Java 遍历指定文件夹及子文件夹下的文件

    Java 遍历指定文件夹及子文件夹下的文件 /** * 遍历指定文件夹及子文件夹下的文件 * * @author testcs_dn * @date 2014年12月12日下午2:33:49 * @p ...

  3. 2019北航OO第一单元作业总结

    一.前三次作业内容分析总结 前言 前三次作业,我提交了三次,但是有效作业只有两次,最后一次作业没能实现多项式求导的基本功能因此无疾而终,反思留给后文再续,首先我介绍一下这三次作业,三次作业围绕着多项式 ...

  4. JS form跳转到新标签页并用post传参

    通过js实现跳转到一个新的标签页,并且传递参数.(使用post传参方式) 1 超链接<a>标签  (get传参)  <a href="http://www.cnblogs. ...

  5. HDFS命令实现分析

    HDFS命令概述 HDFS命令涉及两类,一类是hadoop命令,一类是hdfs命令,功能也分为两类,第一类是HDFS文件操作命令,第二类是HDFS管理命令. 二者都是shell命令,真正的命令只有ha ...

  6. 【转】Vulhub - 开源的安全漏洞学习与复现项目

    转载于:https://uk.v2ex.com/t/485611#reply15 Vulhub 是一个面向大众的开源漏洞靶场,无需 docker 知识,简单执行两条命令即可编译.运行一个完整的漏洞靶场 ...

  7. [转]超级强大的SVG SMIL animation动画详解

    超级强大的SVG SMIL animation动画详解 本文花费精力惊人,具有先驱前瞻性,转载规则以及申明见文末,当心予以追究.本文地址:http://www.zhangxinxu.com/wordp ...

  8. Linux下多线程编程中信号量介绍及简单使用

    在Linux中有两种方法用于处理线程同步:信号量和互斥量. 线程的信号量是一种特殊的变量,它可以被增加或减少,但对其的关键访问被保证是原子操作.如果一个程序中有多个线程试图改变一个信号量的值,系统将保 ...

  9. cjoj P1435 - 【模板题 USACO】AC自动机 && 洛谷 P3796 【模板】AC自动机(加强版)

    又打了一遍AC自动稽. 海星. 好像是第一次打trie图,很久以前就听闻这个思想了.OrzYYB~ // It is made by XZZ #include<cstdio> #inclu ...

  10. C#简单的四位纯数字验证码

    验证码练手,整型.四位验证码 大体意思就是:四位纯数字验证,只要验证不成功就无限验证 刚开始在纠结怎么让整个过程循环起来,什么循环放到最外层,其实就是一个循环,看来自己的循环练习的还是不够多,不够灵活 ...