Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路
Description
Input
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES 题目意思:有n种货币,货币之间按照汇率交换,当然还要花费一些手续费,货币交换是可以多次重复进行的,问有没有可能经过一系列的货币交换,开始的货币会增加?
当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。
解题思路:这道题可以抽象为图论中的题,将货币种类看为点,货币之间的交换看为有向边,想要货币的金额产生增加,那么必然要有正权回路,即在一条回路上能够一直松弛下去。该题的问题主要在于所给的参数很多,第一行给出了n种货币有m种交换方式,给你第s种货币有V的金额,对于m种的交换方式,从x到y需要汇率rate和手续费commission,从y到x也需要这两个参数。同时这里的松弛递推公式也要发生变化:
if(dist[edge[i].t]<(dist[edge[i].f]-edge[i].c)*edge[i].r)
{
dist[edge[i].t]=(dist[edge[i].f]-edge[i].c)*edge[i].r;
}
因为是需要增加的正权回路,所以如果小于就松弛。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
struct Edge
{
int f;
int t;
double r;
double c;
} edge[];
double dist[];
int n,m,s,cnt;
double x;
int bellman_ford()
{
int i,j;
int flag;
for(i=; i<=n; i++)
{
dist[i]=;
}
dist[s]=x;
for(j=; j<=n; j++)
{
flag=;
for(i=; i<=cnt; i++)
{
if(dist[edge[i].t]<(dist[edge[i].f]-edge[i].c)*edge[i].r)
{
dist[edge[i].t]=(dist[edge[i].f]-edge[i].c)*edge[i].r;
flag=;
}
}
if(flag==)
{
break;
}
}
return flag;
}
int main()
{
int i,t;
int u,v;
double a1,a2,b1,b2;
while(scanf("%d%d%d%lf",&n,&m,&s,&x)!=EOF)
{
cnt=;
while(m--)
{
scanf("%d%d%lf%lf%lf%lf",&u,&v,&a1,&b1,&a2,&b2);
edge[cnt].f=u;
edge[cnt].t=v;
edge[cnt].r=a1;
edge[cnt++].c=b1;
edge[cnt].f=v;
edge[cnt].t=u;
edge[cnt].r=a2;
edge[cnt++].c=b2;
}
if(bellman_ford())
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return ;
}
附上使用SPFA的代码
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxs = 1e3+;
int n,m;
struct Edge
{
int to;
double rate;
double com;
} ;
double dis[maxs];
int vis[maxs];
int cnt[maxs];///用来记录入队列次数
vector<Edge>maps[maxs];
void AddEdge(int u,int v,double r,double co)
{
Edge t;
t.to=v;
t.rate=r;
t.com=co;
maps[u].push_back(t);
}
int SPFA(int s, double v)
{
int i;
memset(dis,,sizeof());
memset(vis,,sizeof());
memset(cnt,,sizeof());
queue<int>q;
dis[s]=v;
vis[s]=;
cnt[s]++;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=;
for(i=; i<maps[u].size(); i++)
{
int to=maps[u][i].to;
double com=maps[u][i].com;
double rate=maps[u][i].rate;
if(dis[to]<(dis[u]-com)*rate)
{
dis[to]=(dis[u]-com)*rate;
if(!vis[to])
{
vis[to]=;
cnt[to]++;
if(cnt[to]>=n)
{
return ;
}
q.push(to);
}
}
}
}
return ;
}
int main()
{
int s,i;
double k;
while(scanf("%d%d%d%lf",&n,&m,&s,&k)!=EOF)
{
int a,b;
double c,d,e,f;
while(m--)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f);
AddEdge(a,b,c,d);
AddEdge(b,a,e,f);
}
if(SPFA(s,k))
{
puts("YES");
}
else
{
puts("NO");
}
}
return ;
}
Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路的更多相关文章
- poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)
链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...
- Currency Exchange POJ - 1860 (spfa判断正环)
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- POJ1680 Currency Exchange SPFA判正环
转载来源:優YoU http://user.qzone.qq.com/289065406/blog/1299337940 提示:关键在于反向利用Bellman-Ford算法 题目大意 有多种汇币,汇 ...
- 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 19881 Accepted: 711 ...
- POJ 1860 Currency Exchange(最短路&spfa正权回路)题解
题意:n种钱,m种汇率转换,若ab汇率p,手续费q,则b=(a-q)*p,你有第s种钱v数量,问你能不能通过转化让你的s种钱变多? 思路:因为过程中可能有负权值,用spfa.求是否有正权回路,dis[ ...
- POJ1860-Currency Exchange (正权回路)【Bellman-Ford】
<题目链接> <转载于 >>> > 题目大意: 有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0. ...
- HDU - 1317 ~ SPFA正权回路的判断
题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...
- Bellman_ford货币兑换——正权回路判断
POJ1860 题目大意:你在某一点有一些钱,给定你两点之间钱得兑换规则,问你有没有办法使你手里的钱增多.就是想看看转一圈我的钱能不能增多,出现这一点得条件就是有兑换钱得正权回路,所以选择用bellm ...
- [ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)
Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to tr ...
随机推荐
- Usaco2008 Jan
[Usaco2008 Jan] https://www.luogu.org/problemnew/show/P2419 题目描述 N (1 ≤ N ≤ 100) cows, conveniently ...
- 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...
- ucos串口通讯模块设计
在嵌入式应用中,使用RTOS的主要原因是为了提高系统的可靠性,其次是提高开发效率.缩短开发周期.uCOS-II是一个占先式实时多任务内核,使用对象是嵌入式系统,对源代码适当裁减,很容易移植到8~32位 ...
- STL容器与拷贝构造函数
所有容器提供的都是“value语意”而非“reference语意”.容器内进行元素的安插操作时,内部实施的是拷贝操作,置于容器内.因此STL容器 的每一个元素都必须能够拷贝.---<<C+ ...
- boost::bind 学习
最近学习了太多与MacOS与Iphone相关的东西,因为不会有太多人有兴趣,学习的平台又是MacOS,不太喜欢MacOS下的输入法,所以写下来的东西少了很多. 等我学习的东西慢慢的与平台无关的时 ...
- IntelliJ IDEA 历史版本下载地址
地址:https://confluence.jetbrains.com/display/IntelliJIDEA/Previous+IntelliJ+IDEA+Releases scala插件:htt ...
- ISP与IAP
ISP:in system program 顾名思义,在系统编程,单片机不用从电路上拆下,直接用下载器或者串口即可完成程序的烧写.这个是用于工程师调试程序,或者出厂时烧写程序.本质上是芯片出厂时烧录到 ...
- 【HNOI2015】亚瑟王
题面 题解 考虑进行\(dp\). 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 我们可以知道第\(i\)张卡不被触发的概率为\((1 - p_i) ^ {r - j}\ ...
- let和var定义变量的区别
使用 let 语句声明一个变量,该变量的范围限于声明它的块中. 可以在声明变量时为变量赋值,也可以稍后在脚本中给变量赋值. 使用 let 声明的变量,在声明前无法使用,否则将会导致错误. 如果未在 ...
- P4438 [HNOI/AHOI2018]道路
辣稽题目 毁我青春 耗我钱财. 设\(f[x][i][j]\)为从1号点走到x点经过i条公路j条铁路,子树的最小代价. \(f[leaf][i][j]=(A+i)(B+j)C\) \(f[x][i][ ...