Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.  For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.  You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.  Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3.  For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2.  Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题目意思:有n种货币,货币之间按照汇率交换,当然还要花费一些手续费,货币交换是可以多次重复进行的,问有没有可能经过一系列的货币交换,开始的货币会增加?
当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。
解题思路:这道题可以抽象为图论中的题,将货币种类看为点,货币之间的交换看为有向边,想要货币的金额产生增加,那么必然要有正权回路,即在一条回路上能够一直松弛下去。该题的问题主要在于所给的参数很多,第一行给出了n种货币有m种交换方式,给你第s种货币有V的金额,对于m种的交换方式,从x到y需要汇率rate和手续费commission,从y到x也需要这两个参数。同时这里的松弛递推公式也要发生变化:
            if(dist[edge[i].t]<(dist[edge[i].f]-edge[i].c)*edge[i].r)
{
dist[edge[i].t]=(dist[edge[i].f]-edge[i].c)*edge[i].r;
}
因为是需要增加的正权回路,所以如果小于就松弛。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
struct Edge
{
int f;
int t;
double r;
double c;
} edge[];
double dist[];
int n,m,s,cnt;
double x;
int bellman_ford()
{
int i,j;
int flag;
for(i=; i<=n; i++)
{
dist[i]=;
}
dist[s]=x;
for(j=; j<=n; j++)
{
flag=;
for(i=; i<=cnt; i++)
{
if(dist[edge[i].t]<(dist[edge[i].f]-edge[i].c)*edge[i].r)
{
dist[edge[i].t]=(dist[edge[i].f]-edge[i].c)*edge[i].r;
flag=;
}
}
if(flag==)
{
break;
}
}
return flag;
}
int main()
{
int i,t;
int u,v;
double a1,a2,b1,b2;
while(scanf("%d%d%d%lf",&n,&m,&s,&x)!=EOF)
{
cnt=;
while(m--)
{
scanf("%d%d%lf%lf%lf%lf",&u,&v,&a1,&b1,&a2,&b2);
edge[cnt].f=u;
edge[cnt].t=v;
edge[cnt].r=a1;
edge[cnt++].c=b1;
edge[cnt].f=v;
edge[cnt].t=u;
edge[cnt].r=a2;
edge[cnt++].c=b2;
}
if(bellman_ford())
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return ;
}

附上使用SPFA的代码

#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxs = 1e3+;
int n,m;
struct Edge
{
int to;
double rate;
double com;
} ;
double dis[maxs];
int vis[maxs];
int cnt[maxs];///用来记录入队列次数
vector<Edge>maps[maxs];
void AddEdge(int u,int v,double r,double co)
{
Edge t;
t.to=v;
t.rate=r;
t.com=co;
maps[u].push_back(t);
}
int SPFA(int s, double v)
{
int i;
memset(dis,,sizeof());
memset(vis,,sizeof());
memset(cnt,,sizeof());
queue<int>q;
dis[s]=v;
vis[s]=;
cnt[s]++;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=;
for(i=; i<maps[u].size(); i++)
{
int to=maps[u][i].to;
double com=maps[u][i].com;
double rate=maps[u][i].rate;
if(dis[to]<(dis[u]-com)*rate)
{
dis[to]=(dis[u]-com)*rate;
if(!vis[to])
{
vis[to]=;
cnt[to]++;
if(cnt[to]>=n)
{
return ;
}
q.push(to);
}
}
}
}
return ;
}
int main()
{
int s,i;
double k;
while(scanf("%d%d%d%lf",&n,&m,&s,&k)!=EOF)
{
int a,b;
double c,d,e,f;
while(m--)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f);
AddEdge(a,b,c,d);
AddEdge(b,a,e,f);
}
if(SPFA(s,k))
{
puts("YES");
}
else
{
puts("NO");
}
}
return ;
}


Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路的更多相关文章

  1. poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)

    链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...

  2. Currency Exchange POJ - 1860 (spfa判断正环)

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  3. POJ1680 Currency Exchange SPFA判正环

    转载来源:優YoU  http://user.qzone.qq.com/289065406/blog/1299337940 提示:关键在于反向利用Bellman-Ford算法 题目大意 有多种汇币,汇 ...

  4. 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 711 ...

  5. POJ 1860 Currency Exchange(最短路&spfa正权回路)题解

    题意:n种钱,m种汇率转换,若ab汇率p,手续费q,则b=(a-q)*p,你有第s种钱v数量,问你能不能通过转化让你的s种钱变多? 思路:因为过程中可能有负权值,用spfa.求是否有正权回路,dis[ ...

  6. POJ1860-Currency Exchange (正权回路)【Bellman-Ford】

    <题目链接> <转载于 >>> > 题目大意: 有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0. ...

  7. HDU - 1317 ~ SPFA正权回路的判断

    题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...

  8. Bellman_ford货币兑换——正权回路判断

    POJ1860 题目大意:你在某一点有一些钱,给定你两点之间钱得兑换规则,问你有没有办法使你手里的钱增多.就是想看看转一圈我的钱能不能增多,出现这一点得条件就是有兑换钱得正权回路,所以选择用bellm ...

  9. [ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)

    Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to tr ...

随机推荐

  1. Usaco2008 Jan

    [Usaco2008 Jan] https://www.luogu.org/problemnew/show/P2419 题目描述 N (1 ≤ N ≤ 100) cows, conveniently ...

  2. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  3. ucos串口通讯模块设计

    在嵌入式应用中,使用RTOS的主要原因是为了提高系统的可靠性,其次是提高开发效率.缩短开发周期.uCOS-II是一个占先式实时多任务内核,使用对象是嵌入式系统,对源代码适当裁减,很容易移植到8~32位 ...

  4. STL容器与拷贝构造函数

    所有容器提供的都是“value语意”而非“reference语意”.容器内进行元素的安插操作时,内部实施的是拷贝操作,置于容器内.因此STL容器 的每一个元素都必须能够拷贝.---<<C+ ...

  5. boost::bind 学习

    最近学习了太多与MacOS与Iphone相关的东西,因为不会有太多人有兴趣,学习的平台又是MacOS,不太喜欢MacOS下的输入法,所以写下来的东西少了很多.    等我学习的东西慢慢的与平台无关的时 ...

  6. IntelliJ IDEA 历史版本下载地址

    地址:https://confluence.jetbrains.com/display/IntelliJIDEA/Previous+IntelliJ+IDEA+Releases scala插件:htt ...

  7. ISP与IAP

    ISP:in system program 顾名思义,在系统编程,单片机不用从电路上拆下,直接用下载器或者串口即可完成程序的烧写.这个是用于工程师调试程序,或者出厂时烧写程序.本质上是芯片出厂时烧录到 ...

  8. 【HNOI2015】亚瑟王

    题面 题解 考虑进行\(dp\). 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 我们可以知道第\(i\)张卡不被触发的概率为\((1 - p_i) ^ {r - j}\ ...

  9. let和var定义变量的区别

    使用 let 语句声明一个变量,该变量的范围限于声明它的块中.  可以在声明变量时为变量赋值,也可以稍后在脚本中给变量赋值. 使用 let 声明的变量,在声明前无法使用,否则将会导致错误. 如果未在  ...

  10. P4438 [HNOI/AHOI2018]道路

    辣稽题目 毁我青春 耗我钱财. 设\(f[x][i][j]\)为从1号点走到x点经过i条公路j条铁路,子树的最小代价. \(f[leaf][i][j]=(A+i)(B+j)C\) \(f[x][i][ ...