由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!、x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!)。

  φ(m!)=m!*∏(1-1/pi)。其中的pi即为1~m中所有质数。那么这个前缀积就可以预处理了。

  当n、m大于p的时候是可能有问题的,数据里没有就懒得讨论了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10000010
int T,P,prime[N],exphi[N],cnt=;
int fac[N],inv[N],inv2[N];
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2186.in","r",stdin);
freopen("bzoj2186.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read(),P=read();
fac[]=;for (int i=;i<min(P,N-);i++) fac[i]=1ll*fac[i-]*i%P;
inv[]=;for (int i=;i<min(P,N-);i++) inv[i]=(P-1ll*(P/i)*inv[P%i]%P)%P;
inv2[]=;for (int i=;i<min(P,N-);i++) inv2[i]=1ll*inv2[i-]*inv[i]%P;
flag[]=;
for (int i=;i<min(P,N-);i++)
{
if (!flag[i]) prime[++cnt]=i;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
exphi[]=;
for (int i=;i<min(P,N-);i++)
if (!flag[i]) exphi[i]=1ll*exphi[i-]*(P+-inv[i])%P;
else exphi[i]=exphi[i-];
for (int i=;i<min(P,N-);i++)
exphi[i]=1ll*exphi[i]*fac[i]%P;
while (T--)
{
int n=read(),m=read();
printf("%d\n",1ll*fac[n]*inv2[m]%P*exphi[m]%P);
}
return ;
}

BZOJ2186 SDOI2008沙拉公主的困惑(数论)的更多相关文章

  1. [bzoj2186][Sdoi2008]沙拉公主的困惑——数论

    题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...

  2. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  3. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  5. [bzoj2186][Sdoi2008]沙拉公主的困惑_数论

    沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...

  6. 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑

    http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...

  7. BZOJ2186: [Sdoi2008]沙拉公主的困惑

    传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...

  8. BZOJ 2186 SDOI2008 沙拉公主的困惑 数论

    题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...

  9. 【BZOJ2186】沙拉公主的困惑(数论)

    [BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...

随机推荐

  1. 基于Cocos2d-x-1.0.1的飞机大战游戏迁移到Cocos2d-x-3.0版本,并移植到Android平台成功运行

    一.版本迁移中的问题 1.游戏元素Sprite.Label.Action等等的创建函数名都改为create. 2.函数的回调callfunc_selectorcallfuncN_selectorcal ...

  2. Myeclipse提高运行速度的方法

    下文是在其他博客拷过来的,借鉴借鉴,留个笔记,哈哈 1.老是弹出Quick update error .关闭myeclipse的Quick Update自动更新功能这个问题的解决办法是关闭自动更新Wi ...

  3. Qt 5.x 开发技巧

    出现unresolved external symbol "public: __thiscall Dialog::Dialog(class QWidget *) 或类似不太合理的错误时,可以 ...

  4. Tomcat分析

    最近闲来无事,总结了一下tomcat的一些知识,分享出来供大家参考,如有错误,请及时与我联系. 1. 入门示例:虚拟主机提供web服务 该示例通过设置虚拟主机来提供web服务,因为是入门示例,所以设置 ...

  5. i++ i+=1 i=i+1 汇编代码效率比较

    结论:一样.编译器和编译器之间可能有点区别但是程序不会变. 0x00 一直不清楚到底是因为懒还是真的为了效率,要把" i = i + 1 "写成" i++ "或 ...

  6. excel窗口独立显示/单独显示

    天赋异禀的亲,一看就懂!

  7. Bing词典vs有道词典比对测试报告——体验篇之成长性及用户控制权

    成长性: 会记住曾经查询过的单词或例句与有道词典实现基本一样,并无特别亮点. 用户有控制权: 必应词典和有道词典都能实现基本的查询前进和后退.以及无法查找结果,能顺利进行反馈. 我们在输入完单词按下回 ...

  8. 实验五Java网络编程及安全——20135337朱荟潼

    实验五 Java网络编程及安全 结对伙伴:20135317韩玉琪(负责服务器方)http://www.cnblogs.com/hyq20135317/p/4567241.html 实验内容 1.掌握S ...

  9. 2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-最后阶段

    2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-最后阶段 最后的一周,时间越来越紧张,因为之前的拖沓和一些事情的耽误,导致了如今的紧张,这一周应该是我们小组效率最高 ...

  10. 第一阶段Spring个人总结

    通过这一阶段的冲刺,我感到的是名义上的团队,而实际上却是一个人的事,每个人跟每个人都不一样,都有自己的特点,总会出些不必要的麻烦. 还有团队的进展也是看不到什么东西,说实话,这次我并没有太多关注团队的 ...