[BZOJ1974][SDOI2010]代码拍卖会[插板法]
题意
询问有多少个数位为 \(n\) 的形如 \(11223333444589\) 的数位值不下降的数字在\(\mod p\) 的意义下同余 \(0\)。
$n\leq 10^{18}\ ,p\leq 500 $ 。
分析
考虑普通的状态,矩乘和考虑每种数字选择什么都没法做,要另辟蹊径。
发现这样的数字都可以拆分成1~9个形如 \(111111\) 的形式,记为 \(\rm gg\)。
考虑算出所有此类数字在\(\mod p\) 意义下余数为 \(x\) 的有多少个。
状态呼之欲出: \(f_{i,j,k}\) 表示考虑到 \(\rm gg\) 余数为 \(i\) 的 ,总的余数为 \(j\) ,已经选择了 \(k\) 个 \(\rm gg\) 的方案总数。
转移枚举 \(\rm gg\) 余数为 \(i\) 的选择了多少个,注意这类 \(\rm gg\) 的选择是组合而不是排列,考虑插板法算方案。
总时间复杂度为\(O(10^2*p^2)\)。
可重集的排列变组合可以考虑插板法。
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=504,mod=999911659;
LL st,n,p,rev[N],cnt[N],f[N][N][10],inv[N];
int pos[N];
void add(LL &a,LL b){a+=b;if(a>=mod) a-=mod;}
LL C(LL n,LL m){
LL res=1ll;
for(LL i=n-m+1;i<=n;++i) res=i%mod*res%mod;
for(LL i=2;i<=m;++i) res=res*inv[i]%mod;
return res;
}
int main(){
scanf("%lld%lld",&n,&p);
inv[1]=1;
for(int i=2;i<=500;++i) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
memset(pos,-1,sizeof pos);
pos[0]=0,rev[0]=0,cnt[0]=1;LL v=1%p;
for(LL i=1;i<=min(n,p);++i){
if(pos[v]!=-1){
LL len=i-pos[v],a=(n-i+1)/len,b=(n-i+1)%len;
st=rev[pos[v]+(b-1+len)%len];
for(int j=pos[v];j<i;++j) cnt[rev[j]]+=a+(j-pos[v]+1<=b);
break;
}else if(i==n) st=v;
pos[v]=i,rev[i]=v,cnt[v]++;
v=(v*10+1)%p;
}
rep(k,0,8) f[0][st][k]=C(cnt[0]+k-1,k);
rep(i,1,p-1)
rep(j,0,p-1)
rep(k,0,8){
f[i][j][k]=f[i-1][j][k];
rep(h,1,k)
add(f[i][j][k],f[i-1][((j-h*i)%p+p)%p][k-h]*C(cnt[i]+h-1,h)%mod);
}
printf("%lld\n",f[p-1][0][8]);
return 0;
}
[BZOJ1974][SDOI2010]代码拍卖会[插板法]的更多相关文章
- SDOI2010代码拍卖会 (计数类DP)
P2481 SDOI2010代码拍卖会 $ solution: $ 这道题调了好久好久,久到都要放弃了.洛谷的第五个点是真的强,简简单单一个1,调了快4个小时! 这道题第一眼怎么都是数位DP,奈何数据 ...
- Luogu2481 SDOI2010 代码拍卖会 DP、组合
传送门 神仙DP 注意到\(N \leq 10^{18}\),不能够直接数位DP,于是考虑形成的\(N\)位数的性质. 因为低位一定不会比高位小,所以所有满足条件的\(N\)位数一定是不超过\(9\) ...
- 洛谷 P2481 [SDOI2010]代码拍卖会(背包+隔板法)
题面传送门 题意: 给出 \(n,p\),求有多少 \(n\) 位数 \(X=a_1a_2a_3\dots a_n\) 满足: 该 \(n\) 位数不含前导零 \(a_i \leq a_{i+1}\) ...
- [SDOI2010]代码拍卖会
题目描述 随着iPig在P++语言上的造诣日益提升,他形成了自己一套完整的代码库.猪王国想参加POI的童鞋们都争先恐后问iPig索要代码库.iPig不想把代码库给所有想要的小猪,只想给其中的一部分既关 ...
- bzoj 1974: [Sdoi2010]代码拍卖会
Description 随着iPig在P++语言上的造诣日益提升,他形成了自己一套完整的代 码库.猪王国想参加POI的童鞋们都争先恐后问iPig索要代码库.iPi g不想把代码库给所有想要的小猪,只想 ...
- 洛谷 P2481 [SDOI2010]代码拍卖会
洛谷 这大概是我真正意义上的第一道黑题吧! 自己想出了一个大概,状态转移方程打错了一点点,最后还是得看题解. 一句话题意:求出有多少个\(n\)位的数,满足各个位置上的数字从左到右不下降,且被\(p\ ...
- [SDOI2010]代码拍卖会——DP
原题戳这里 绝对是一道好题 需要注意到两个东西 1.符合条件的数可以拆成一堆\(11...11\)相加的形式,比如\(1145=1111+11+11+11+1\) 2.\(1,11,111,1111, ...
- luogu P2481 [SDOI2010]代码拍卖会
luogu 题目中的那个大数一定是若干个1+若干个2+若干个3...+若干个9组成的,显然可以转化成9个\(\underbrace {111...1}_{a_i个1}(0\le a_1\le a_2\ ...
- 【BZOJ-1974】auction代码拍卖会 DP + 排列组合
1974: [Sdoi2010]auction 代码拍卖会 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 305 Solved: 122[Submit ...
随机推荐
- Linux系统设置运行级别
设置运行级别 查看开机加载级别:7个级别 规范场景默认都是3 cat /etc/inittab --> 系统开机启动加载的文件,可以设置运行级别 # Default runlev ...
- 最强自定义PHP集成环境,系统缺失dll和vc也能正常运行
PHPWAMP支持iis.apache.nginx等web服务器,并全部支持php多版本同时运行,无限自定义mysql.php PHPWAMP支持32和64,支持自定义自动匹配系统所需dll和vc,纯 ...
- 如何从Microsoft web platform installer取得离线安装包
有一架visual studio 2012的开发环境A由于某种原因无法链接internet, 于是乎安装officetoolsforvisual2012就有问题了. 从微软的官网上只可以下载 offi ...
- SDN上机第二次作业
SDN第二次上机作业 1.安装floodlight 参考链接:http://www.sdnlab.com/19189.html 2.生成拓扑并连接控制器floodlight,利用控制器floodlig ...
- 个人作业2:APP案例分析--腾讯动漫
第一部分 调研,评测 个人第一次上手体验 以往看漫画就是在浏览器直接搜索在网页上看,直到用了腾讯动漫APP,我才摒弃这个很low的方法.腾讯动漫直接用qq就可以登陆,有更齐全的漫画分类,更清晰的画质, ...
- SC review 5.2 设计可复用软件
行为子类型与Liskov替换原则 Java 中编译器执行的规则(静态类型检查): • 子类型可以增加方法,但不可删 • 子类型需要实现抽象类型中的所有未实现方法 • 子类型中重写的方法必须有相同或子类 ...
- 理解活在Iphone中的那些App (二)
app是什么,为什么而存在 存在即合理的说法,已经被批臭批烂了.所以,作为一个程序员不能简简单单的因为上面来了一个需求,就完成一个需求.让做一个app就做一个app,只是简单的认为存在即合理,头让写就 ...
- 基于easyui开发Web版Activiti流程定制器详解(二)——文件列表
上一篇我们介绍了目录结构,这篇给大家整理一个文件列表以及详细说明,方便大家查找文件. 由于设计器文件主要保存在wf/designer和js/designer目录下,所以主要针对这两个目录进行详细说明. ...
- oc的静态函数static
oc的静态函数与类函数不同: 1.静态函数与c++中表现一致,只在模块内部可见: 2.静态函数内部没有self变量: 3.静态函数不参与动态派发:没有在函数列表里:是静态绑定的: @implement ...
- hdu 4803 Poor Warehouse Keeper(贪心+数学)
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/26005267 题目链接:hdu 4803 P ...