题目大意

求 $\sum_{i = 1}^{n} \sum_{j = 1}^{m} \mu(\lcm(i, j))$ 。
$ 1 \le n, m \le 10^6 $ 。

分析

不妨设 $ n \le m$ 。

$ \mu(\lcm(i, j)) = \mu(i) \mu(j) \mu(\gcd(i, j)) $

令 $S = \sum_{i = 1}^{n} \sum_{j = 1}^{m} \mu(\lcm(i, j))$

\begin{aligned}
S &= \sum_{i = 1}^{n} \sum_{j = 1}^{m} \mu(i) \mu(j) \mu(\gcd(i, j)) \\
&= \sum_{d = 1}^{n} \mu(d) \sum_{i = 1}^{n} \sum_{j = 1}^{m} \mu(i) \mu(j) [\gcd(i, j) = d] \\
&= \sum_{d = 1}^{n} \mu(d) \sum_{i = 1}^{n/d} \sum_{j = 1}^{m/d} \mu(id) \mu(jd) \color{red}{ [\gcd(i, j) = 1] } \\
&= \sum_{d = 1}^{n} \mu(d) \sum_{i = 1}^{n/d} \sum_{j = 1}^{m/d} \mu(id) \mu(jd) \color{red}{ \sum_{k \mid \gcd(i, j)} \mu(k) } \\
&= \sum_{d = 1}^{n} \mu(d) \sum_{i = 1}^{n/d} \sum_{j = 1}^{m/d} \mu(id) \mu(jd) \color{red}{ \sum_{k \mid i, k \mid{j}} \mu(k) } \\
&= \sum_{d = 1}^{n} \mu(d) \sum_{k = 1}^{n / d} \mu(k) \sum_{i = 1}^{n/d} \sum_{j = 1}^{m/d} \mu(id) \mu(jd) \sum_{k \mid i, k \mid{j}} 1 \\
&= \sum_{d = 1}^{n} \mu(d) \sum_{k = 1}^{n / d} \mu(k) \sum_{i = 1}^{n/(dk)} \sum_{j = 1}^{m/(dk)} \mu(idk) \mu(jdk)
\end{aligned}

上述红色部分即用莫比乌斯函数的性质 $\sum_{d\mid n} \mu(d) = [n = 1]$ 进行化简的套路。

固定 $dk$(即令 $t = dk$),有

\begin{aligned}
S = \sum_{t = 1}^{n} \color{blue}{ \sum_{d \mid t} \mu(d) \mu(t / d) } \sum_{i = 1}^{n/t} \mu(it) \sum_{j = 1}^{m/t} \mu(jt)
\end{aligned}

$\sum_{d \mid t} \mu(d) \mu(t / d)$ 即 $(\mu * \mu) (t)$ 。

预处理

对于 $t$ 从 $1$ 到 $n$,求

  • $\mu(t)$,用线性筛,复杂度 $O(n)$ 。
  • $\sum_{d \mid i} \mu(d) \mu(i / d)$,复杂度 $O(n \log n)$ 。
  • $\sum_{i = 1}^{n/t} \mu(it)$ 和 $ \sum_{j = 1}^{m/t} \mu(jt) $,复杂度 $O(m \log m)$ 。

HDU 6175 算术的更多相关文章

  1. HDU 4643 GSM 算术几何

    当火车处在换基站的临界点时,它到某两基站的距离相等.因此换基站的位置一定在某两个基站的中垂线上, 我们预处理出任意两基站之间的中垂线,对于每次询问,求询问线段与所有中垂线的交点. 检验这些交点是否满足 ...

  2. HDU 2515 Yanghee 的算术【找规律】

    题意:中文的题目 找规律可以发现 sum[1]=a[1]+a[2] sum[2]=a[1]+a[3] sum[n]=a[2]+a[3] 解出a[1],就可以求出其他的了 #include<ios ...

  3. 算术 HDU - 6715 (莫比乌斯反演)

    大意: 给定$n,m$, 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m\mu(lcm(i,j))$ 首先有$\mu(lcm(i,j))=\mu(i)\mu(j)\m ...

  4. 2017"百度之星"程序设计大赛 - 复赛1001&&HDU 6144 Arithmetic of Bomb【java大模拟】

    Arithmetic of Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. 2018 HDU多校第四场赛后补题

    2018 HDU多校第四场赛后补题 自己学校出的毒瘤场..吃枣药丸 hdu中的题号是6332 - 6343. K. Expression in Memories 题意: 判断一个简化版的算术表达式是否 ...

  6. HDU 4320 Arcane Numbers 1(质因子包含)

    http://acm.hdu.edu.cn/showproblem.php?pid=4320 题意: 给出A,B,判断在A进制下的有限小数能否转换成B进制下的有限小数. 思路: 这位博主讲得挺不错的h ...

  7. 5.Java基础_Java算术/字符/字符串/赋值运算符

    /* 算术/字符/字符串/赋值 运算符 */ public class OperatorDemo01 { public static void main(String[] args){ //算术运算符 ...

  8. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  9. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

随机推荐

  1. wx小程序知识点(六)

    六.生命周期 (1)onLoad    —— 加载时触发,只调用一次,可用来发送请求绑定数据.获取url中参数 (2)onShow   —— 页面显示时触发,每次显示都会执行,用来获取需要频繁更新的数 ...

  2. Cookie相关工具方法

    /** * InputStream转化为byte[]数组 * @param input * @return * @throws IOException */ public static byte[] ...

  3. [深度学习] R-CNN系论文略读

    总结: 一.R-CNN 摘要: 在对象检测方面,其性能在前几年就达到了一个比较稳定的状态.性能最好的方法是一种复杂的整体系统,它将多个图片的低级特征通过上下文组合起来. 本文提出了一种简单.可扩展的算 ...

  4. 计算机网络(三),TCP报文段详解

    目录 1.TCP(Transmission Control Protocol传输控制协议)作用 2.TCP报文段详解 三.TCP报文段详解 1.TCP(Transmission Control Pro ...

  5. CDOJ 图论专题 A.不是图论 强连通分量+拓扑排序 经典

    题目链接  在其中纠错第一次wa代码 #include <cstdio> #include <cstring> #include <cstdlib> #includ ...

  6. Java Optional orElse() 和 orElseGet() Optional.flatMap()和Optional.map()区别

    Java Optional 的 orElse() 和 orElseGet() 的区别 1. 接收的参数不同 orElse()方法以一个自定义类型的数据作为参数 public T orElse(T t) ...

  7. java实现数据库之间批量插入数据

    package comnf147Package; import java.sql.*; public class DateMigrationLagou { //连接SQLite private Con ...

  8. vue-cli构建一个工程

    使用前,必须要先按照 node:安装node Vue CLI官方文档:https://cli.vuejs.org/zh/ 安装node地址:https://nodejs.org/zh-cn/downl ...

  9. ubuntu环境配置终极解答

    1. ubuntu中常用的5个配置文件 1)/etc/profile 2)/etc/environment 环境变量在这个文件中定义,可以用vim /etc/environment查看该文件内容 3) ...

  10. crossdomain.xml解决跨域问题

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...