FHJ学长的心愿

原题链接,点我进去

题意

给你一个数N,让你求在$$C^{0}{n} \ C{1}_{n} C{2}{n}\ \dots \ C^{n}_{n}$$中有几个组合数是奇数。

解题思路

出题人CX学长给的题解:

本题实际上是考察的Lucas定理。

Lucas定理:(写程序的时候后半部分可以递归求)

设\(P\)为素数,则:

\[C^{m}_{n}(\% P)=C^{m\%P}_{n\%P}∗C^{⌊m/P⌋}_{⌊n/P⌋}(\%P)
\]

一句话概括,就是一个组合数可以拆成\(P\)进制下的乘积,如下:(与上式本质相同)

\[n = n_{k}*p^{k}+n_{k-1}*p^{k-1}+...+n_{1}*p+n_0
\]

\[m = m_{k}*p^{k}+m_{k-1}*p^{k-1}+...+m_{1}*p+m_0
\]

则(上式实际上也就是把\(n,m\)分解成了\(P\)进制的形式):

\[C^{m}_{n}(\% P)=C^{m_{k}}_{n_{k}}∗C^{m_{k-1}}_{n_{k-1}}*...*C^{m_{0}}_{n_{0}}(\%P)
\]

当\(P = 2\)的时候,其实就只有四种情况:\(,,,,,C_1^0, C_0^1, C_0^0, C_1^1\),其中只有\(C_0^1 =0\),其余都是1。

那么对于这个题,我们实际上要找的就是在\(C_n^0...C_n^n\)中有多少个 \(C_n^m\)满足\(C_n^m\%2=1\)。

对于给定的\(n\),我们去考虑\(m\),如果对应\(n\)的二进制位为0,那么\(m\)对应的二进制位只能为0(因为\(C_0^1 =0\)),如果对应\(n\)的二进制位为1,那么\(m\)对应的二进制位可以为1也可以为0。(这样也保证了统计的\(m\leq n\))。

所以答案就是n的二进制中1的位置取0或1的所有可能。即\(2^{cnt}\),\(cnt\)为\(n\)的二进制中1的个数。

这个题有人竟然通过找规律找出来的,真强。

代码实现

#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
while (scanf("%d", &n) != EOF) {
int cnt = 0;
while (n) {
if (n & 1) cnt++;
n >>= 1;
}
printf("%d\n", 1 << cnt);
}
return 0;
}

FHJ学长的心愿 QDUOJ 数论的更多相关文章

  1. lb开金矿 QDUOJ 数论

    lb开金矿 QDUOJ 数论 原题链接,点我进去 题意 大家都知道lb有n个小弟(编号从2到n+1),他们可以按照规则传递信息:某天编号为i的小弟收到信息后,那么第二天他会给编号为j的小弟传达信息,其 ...

  2. XDTIC2019招新笔试题 + 官方解答

    腾讯创新俱乐部2019年招新笔试试题   [1] 小宗学长正在努力学习数论,他写下了一个奇怪的算式: \[ 2019^{2018^{2017^{\dots^{2^1}}}} \] 算式的结果一定很大, ...

  3. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  4. 一位学长的ACM总结(感触颇深)

    发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...

  5. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  6. 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)

    \([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...

  7. 数论day1 —— 基础知识(们)

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61632537 向大(hei)佬(e)势力学(di ...

  8. HRBUST 1211 火车上的人数【数论解方程/模拟之枚举+递推】

    火车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站,在第2站有人上.下车,但上.下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人.从第3站起(包括第3站 ...

  9. LZH的多重影分身 qduoj 思维 差分

    LZH的多重影分身 qduoj 思维 差分 原题链接:https://qduoj.com/problem/591 题意 在数轴上有\(n\)个点(可以重合)和\(m\)条线段(可以重叠),你可以同时平 ...

随机推荐

  1. kafka伪分布式安装(2.12版)

    1.下载并解压. tar -xvf  kafka_2.12-1.0.0.tgz 2.进入config目录修改server.properties文件. log.dirs=/tmp/kafka-logs ...

  2. Dw 表单制作 与 dedecms 结合实现提交效果

    Dw 表单制作 与 dedecms 结合实现提交效果 自定义表单的用处 1.教育类网站的学员报名 2.企业网站的在线订单 3.普通网页上的一些和用户交互的小功能 实现原理:首先添加表单:核心-频道模型 ...

  3. jquery animated选择器 语法

    jquery animated选择器 语法 作用::animated 选择器选取当前的所有动画元素.直线电机参数 语法:$(":animated") jquery animated ...

  4. QtCreator常用之快捷键

    1. Ctrl(按住)+ Tab快速切换已打开的文件 2. 自动添加成员函数实体(.cpp)定义: 将光标移动到h文件中的方法声明. 按Alt(按住)+ Enter,再按回车键 将在cpp中添加该函数 ...

  5. select * from (XXXXX)[字符]——写法解析

    步骤:1.先执行括号里的语句:查询 select id from three ,将查询出来的数据作为一个结果集 取名为 a2.然后 再 select * from a 查询a ,将 结果集a 全部查询 ...

  6. vue-router(转)——基本使用 + 路由守卫无限循环问题

    路由守卫无限循环问题 https://www.jianshu.com/p/1187f8f74a72 学习目的 学习Vue的必备技能,必须 熟练使用 Vue-router,能够在实际项目中运用. Vue ...

  7. ELK5+redhat7.4配置elasticsearch集群

    ELK介绍 ELK是三个开源软件的缩写,即elasticsearch.logstack.kibana. Elasticsearch:开源分布式搜索引擎,提供搜集.分析.存储数据三大功能.它的特点有:分 ...

  8. [LeetCode]-009-Palindrome_Number

    Determine whether an integer is a palindrome. Do this without extra space. Some hints: Could negativ ...

  9. java统计文档中相同字符出现次数(超详细)

    public class test { public static void main(String[] args) throws Exception { InputStream file = new ...

  10. 二、robotframework接口测试-常用关键字介绍

    1.常用关键字介绍: a. 打印:log                                                  用法:log   打印内容 ---------------- ...