[洛谷P4072] SDOI2016 征途
问题描述
Pine开始了从S地到T地的征途。
从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站。
Pine计划用m天到达T地。除第m天外,每一天晚上Pine都必须在休息站过夜。所以,一段路必须在同一天中走完。
Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。
帮助Pine求出最小方差是多少。
设方差是v,可以证明,\(v\times m^2\)是一个整数。为了避免精度误差,输出结果时输出\(v\times m^2\)。
输入格式
第一行两个数 n、m。
第二行 n 个数,表示 n 段路的长度
输出格式
一个数,最小方差乘以 \(m^2\) 后的值 。
样例输入
5 2
1 2 5 8 6
样例输出
36
说明
对于 \(30\%\) 的数据,\(1 \le n \le 10\)。
对于 \(60\%\) 的数据,\(1 \le n \le 100\)。
对于 \(100\%\) 的数据,\(1 \le n \le 3000\)。
保证从 S 到 T 的总路程不超过 30000 。
解析
首先,我们需要化简方差的式子,
\]
所以
\]
所以,我们需要把路程划分为m个部分,使\(v_1^2+...+v_m^2\)最小。这个可以用动态规划来完成。设\(f[i][j]\)表示将前i个数划分成j段的最小值。我们有如下状态转移方程:
\]
然后这个转移方程可以用斜率优化。
代码
#include <iostream>
#include <cstdio>
#define int long long
#define N 3002
using namespace std;
int n,m,i,j,v[N],sum[N],f[N][N],q[N],head,tail;
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
double k(int x,int i,int j)
{
return 1.0*((f[i][x]+sum[i]*sum[i])-(f[j][x]+sum[j]*sum[j]))/(sum[i]-sum[j]);
}
signed main()
{
n=read();m=read();
for(i=1;i<=n;i++){
v[i]=read();
sum[i]=sum[i-1]+v[i];
f[i][1]=sum[i]*sum[i];
}
for(j=2;j<=m;j++){
head=tail=1;
q[1]=j-1;
for(i=j;i<=n;i++){
while(head<tail&&k(j-1,q[head],q[head+1])<2*sum[i]) head++;
int x=q[head];
f[i][j]=f[x][j-1]+(sum[i]-sum[x])*(sum[i]-sum[x]);
while(head<tail&&k(j-1,q[tail],i)<k(j-1,q[tail],q[tail-1])) tail--;
q[++tail]=i;
}
}
printf("%lld\n",m*f[n][m]-sum[n]*sum[n]);
return 0;
}
[洛谷P4072] SDOI2016 征途的更多相关文章
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)
洛谷题目传送门 一开始肯定要把题目要求的式子给写出来 我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\) 题目要乘\ ...
- 洛谷P4072 [SDOI2016]征途(斜率优化)
传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...
- 洛谷4072 SDOI2016征途 (斜率优化+dp)
首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...
- 洛谷 P4071 [SDOI2016]排列计数
洛谷 这是一道组合数学题. 对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\). 且要保证剩下的序列不稳定,即错排\(D_{n-m}\). 所以答案就是:\[ANS=C^{m}_ ...
- 【洛谷 P4072】 [SDOI2016]征途(斜率优化)
好久没写斜率优化板子都忘了, 硬是交了十几遍.. 推一下柿子就能得到答案为 \[m*\sum x^2-(\sum x)^2\] 后面是个定值,前面简单dp,斜率优化一下就行了. \(f[i][j]=f ...
- 洛谷 P4070 [SDOI2016]生成魔咒 解题报告
P4070 [SDOI2016]生成魔咒 题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 \(1\).\(2\) 拼凑起来形成一个魔咒串 \([1,2]\). 一个魔咒 ...
- 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)
P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...
- 洛谷 P4071 [SDOI2016]排列计数 题解
P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...
随机推荐
- WINDOWS mysql 5.7.15 安装配置方法图文教程
因本人需要需要安装Mysql,现将安装过程记录如下,在自己记录的同时,希望对有疑问的人有所帮助. 一.下载软件 1. 进入mysql官网,登陆自己的oracle账号(没有账号的自己注册一个),下载My ...
- 【Qt开发】QT对话框去掉帮助和关闭按钮 拦截QT关闭窗口的CloseEvent
建了一个对话框,我不想把边框去掉,只想去掉关闭按钮, setWindowFlags(windowFlags()&~Qt::WindowCloseButtonHint&~Qt::Wind ...
- C++学习笔记-面向对象模型探究
C++中的class从面向对象理论出发,将变量(属性)和函数(方法)集中定义在一起,用于描述现实世界中的类.从计算机的角度,程序依然由数据段和代码段构成.那么C++编译器如何完成面向对象理论到计算机程 ...
- HTML笔记(三) 表格和列表
本篇记录表格 (table) 和有序列表 (ordered list) \ 无序列表 (unordered list) 的部分用法 1.表格table 表格标签 使用 <table> 定义 ...
- Laravel-Admin图片上传时的问题
关于laravel-admin进入有图片上传页面时,会提示未配置存储路径等信息.此时需要去配置. 查看config/admin.php里面有 'upload' => [ // Disk in ` ...
- 将PostgreSQL数据库的表导入到elasticsearch中
1.查看PostgreSQL表结构和数据信息 edbstore=# \d customers Table "edbstore.customers" Column | Type | ...
- [转帖]从Intel和ARM争霸,谈芯片前世今生
从Intel和ARM争霸,谈芯片前世今生 http://www.itpub.net/2019/07/24/2476/ 长文预警, 写的非常好.. 我尽量写得轻松一些,因为其实这个话题很有趣,仔细探究起 ...
- 设计模式:备忘录模式(Memento)
个人比较喜欢玩单机游戏,什么仙剑.古剑.鬼泣.使命召唤.三国无双等等一系列的游戏我都玩过(现在期待凡人修仙传),对于这些游戏除了剧情好.场面大.爽快之外,还可以随时存档,等到下次想玩了又可以从刚开始的 ...
- Django中ajax发送post请求,报403错误CSRF验证失败解决办法
今天学习Django框架,用ajax向后台发送post请求,直接报了403错误,说CSRF验证失败:先前用模板的话都是在里面加一个 {% csrf_token %} 就直接搞定了CSRF的问题了:很显 ...
- Robot Framework(一)安装笔记
参考网址:https://www.cnblogs.com/yinrw/p/5837828.html因为自己安装了py,网上教程都是统一安装py2.7开始的. 所以这里总结下安装笔记:cmd命令界面进行 ...