传送门

##解题思路
  设$f(x)$表示到$x$这个点的期望次数,那么转移方程为$f(x)=\sum\frac{f(u)(1 - \frac)}{deg(u)}$,其中$u$为与$x$相连的点,$deg(u)$为$u$的度数。转移方程很好理解的,而每个点的爆炸概论就等于$f(x)\frac$。之后做一遍高斯消元就行了。

##代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include<cmath> using namespace std;
const int N=305;
const double eps=1e-13; inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,m,P,Q,deg[N];
double X[N][N],boom;
vector<int> v[N]; inline void gauss(){
for(int i=1;i<=n;i++){
int p=-1; double Mx=0;
for(int j=i;j<=n;j++)
if(fabs(X[j][i])-eps>Mx) Mx=fabs(X[j][i]),p=j;
if(p==-1) continue;
if(p!=i) for(int j=i;j<=n+1;j++) swap(X[i][j],X[p][j]);
for(int j=1;j<=n;j++){
if(j==i) continue;
double tmp=X[j][i]/X[i][i];
for(int k=i;k<=n+1;k++) X[j][k]-=X[i][k]*tmp;
}
}
} inline void print(){
for(int i=1;i<=n;i++)
printf("%.9lf\n",X[i][n+1]/X[i][i]*boom);
} int main(){
n=rd(),m=rd(),P=rd(),Q=rd(); int x,y;
boom=(double)P/Q;
for(int i=1;i<=m;i++) {
x=rd(),y=rd(); deg[x]++,deg[y]++;
v[x].push_back(y); v[y].push_back(x);
}
for(int i=1;i<=n;i++){
X[i][i]=1;
for(int j=0;j<v[i].size();j++)
X[i][v[i][j]]=-(1-boom)/deg[v[i][j]];
}
X[1][n+1]=1; gauss(); print();
return 0;
}

BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)的更多相关文章

  1. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]

    1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...

  2. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 (高斯消元)

    题面 题目传送门 分析 令爆炸概率为PPP.设 f(i)=∑k=0∞pk(i)\large f(i)=\sum_{k=0}^{\infty}p_k(i)f(i)=∑k=0∞​pk​(i),pk(i)p ...

  3. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡

    1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 563  Solved: 216[Submi ...

  4. BZOJ 1778 [Usaco2010 Hol]Dotp 驱逐猪猡 ——期望DP

    思路和BZOJ 博物馆很像. 同样是高斯消元 #include <map> #include <ctime> #include <cmath> #include & ...

  5. bzoj 1778: [Usaco2010 Hol]Dotp 驱逐猪猡【dp+高斯消元】

    算是比较经典的高斯消元应用了 设f[i]为i点答案,那么dp转移为f[u]=Σf[v]*(1-p/q)/d[v],意思是在u点爆炸可以从与u相连的v点转移过来 然后因为所有f都是未知数,高斯消元即可( ...

  6. bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)

    [题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...

  7. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元

    这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ...

  8. 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡

    [题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ...

  9. BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元

    BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...

随机推荐

  1. 【CF1257A】Two Rival Students【思维】

    题意:给你n个人和两个尖子生a,b,你可以操作k次,每次操作交换相邻两个人的位置,求问操作k次以内使得ab两人距离最远是多少 题解:贪心尽可能的将两人往两边移动,总结一下就是min(n-1,|a-b| ...

  2. appium 安装

    1.npm安装: cmd——cnpm install -g appium 卸载: cmd——npm uninstall -g appium 2.下载安装包安装: Appium server: 1. A ...

  3. Oracle数据库之触发器(二)

    DML触发器是指在进行insert.update或delete操作时触发的程序体.如果你想在用户对数据进行操作时,记录或限制其操作,就可以用DML触发器.举例来说,我想统计我的网站用户的注册.注销或者 ...

  4. LOJ 3094 「BJOI2019」删数——角标偏移的线段树

    题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...

  5. Bugku | 游戏过关

    思路:绕过判断,直接跳转到算flag的函数哪里 1.找到计算flag的函数在哪里,记住 "0075e940",这是入口 2.找到一个现成的跳转指令,修改它: 3.重新运行一遍,得到 ...

  6. 简记 jQuery 插件模板

    /** * @lisence jquery plugin demo v1.0.0 * * author: Jeremy Yu * * description: * this is a jquery p ...

  7. upc组队赛15 Lattice's basics in digital electronics【模拟】

    Lattice's basics in digital electronics 题目链接 题目描述 LATTICE is learning Digital Electronic Technology. ...

  8. 转:父类私有变量是否被子类继承详细解说(答案:内存中存在,但sun公司定义为不继承)

    应作者要求,本处提供一个连接,表示对原作者版权尊重. https://blog.csdn.net/mr_duantao/article/details/50966471

  9. Excel文件加密后忘记密码破解方法

    最好使用VBA 工程密码破解方法 新建一个excel文档,然后打开,同时按Alt和F11,进入VBA界面 点击菜单上的插入,模块 在新的窗口粘贴以下代码: Sub crack() Dim i As L ...

  10. 使用 QSqlTableModel 模型向数据库中插入数据时,为什么使用 rowCount 函数只能返回 256 最大值?

    默认返回缓冲区里面的数据,如果你向要获取更多值,请在前面加入以下语句即可. while(model.canFetchMore()){ model.fetchMore(); } 该语句会获取更多的记录.