题目大意

  有一张$n$个结点,$m$条混合边的图($1 \leq n \leq 200$,$1 \leq m \leq 1000$),求这张图是否存在欧拉回路。

题解

  因为有混合边,所以我们要先给无向边随机定向,然后再调整方向。

  随机定向之后,我们就得到一张有向图。

  我们记录每个结点的入度$ind[i]$和出度$outd[i]$,根据欧拉路的性质可以得到,当$ind[i] + outd[i]$为奇数时,一定不存在欧拉路。

  对于建边过程,因为原有的有向边不能变向,所以我们可以忽略,只需要将读入的无向边随机定向成有向边即,设容量为$1$即可(每条边只能走一次)。

  对于每一个$ind[i] \leq outd[i]$的结点$i$,我们都从源点$s$向$i$连一条有向边,容量为$\frac{outd[i] - ind[i]}{2}$;对于$ind[i] > outd[i]$的结点$i$,从$i$向$t$连一条有向边,容量为$\frac{ind[i] - outd[i]}{2}$。这两种边的含义是连接结点$i$的边中,需要变向的边数。

  显然,我们从$s$开始跑一次最大流,最后判断与$s$或$t$相连的边是否满流即可。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue> #define MAX_N (200 + 5)
#define MAX_M (1000 + 5) using namespace std; struct Edge
{
int to;
int weight;
int next;
}; int T;
int n, m;
int s, t;
int h[MAX_N], tot = ;
Edge e[MAX_N + MAX_M << ];
int ind[MAX_N], outd[MAX_N];
int dep[MAX_N];
int cur[MAX_N];
queue <int> q;
int maxflow; inline void AddEdge(int u, int v, int w)
{
e[++tot].to = v;
e[tot].weight = w;
e[tot].next = h[u];
h[u] = tot;
return;
}; bool BFS()
{
memset(dep, 0x7f, sizeof dep);
memcpy(cur, h, sizeof cur);
q.push(s);
dep[s] = ;
int u, v, w;
while(!q.empty())
{
u = q.front();
q.pop();
for(int i = h[u]; i; i = e[i].next)
{
v = e[i].to;
w = e[i].weight;
if(dep[v] > dep[u] + && w)
{
dep[v] = dep[u] + ;
q.push(v);
}
}
}
return dep[t] != 0x7f7f7f7f;
} int DFS(int u, int flow)
{
if(u == t)
{
maxflow += flow;
return flow;
}
int v, w;
int tmp, sum = ;
for(int i = cur[u]; i && flow; i = e[i].next)
{
cur[u] = i;
v = e[i].to;
w = e[i].weight;
if(dep[v] == dep[u] + && w && (tmp = DFS(v, min(flow, w))))
{
e[i].weight -= tmp;
e[i ^ ].weight += tmp;
sum += tmp;
flow -= tmp;
}
}
return sum;
} void Dinic()
{
while(BFS()) DFS(s, 0x7f7f7f7f);
return;
} int main()
{
scanf("%d", &T);
while(T--)
{
memset(h, , sizeof h);
memset(ind, , sizeof ind);
memset(outd, , sizeof outd);
tot = ;
maxflow = ;
scanf("%d%d", &n, &m);
s = ;
t = n + ;
int u, v, d;
for(int i = ; i <= m; ++i)
{
scanf("%d%d%d", &u, &v, &d);
++outd[u];
++ind[v];
if(!d)
{
AddEdge(u, v, );
AddEdge(v, u, );
}
}
bool isEuler = true;
for(int i = ; i <= n; ++i)
{
if(ind[i] + outd[i] & )
{
isEuler = false;
break;
}
}
if(!isEuler)
{
printf("impossible\n");
continue;
}
int tmp = tot;
for(int i = ; i <= n; ++i)
{
if(ind[i] <= outd[i])
{
AddEdge(s, i, outd[i] - ind[i] >> );
AddEdge(i, s, );
}
else
{
AddEdge(i, t, ind[i] - outd[i] >> );
AddEdge(t, i, );
}
}
Dinic();
for(int i = tmp + ; i <= tot; i += )
{
if(e[i].weight)
{
isEuler = false;
break;
}
}
if(!isEuler) printf("impossible\n");
else printf("possible\n");
}
return ;
}

参考程序

【题解】Sigitseeing Tour的更多相关文章

  1. World Tour Finals 2019 D - Distinct Boxes 题解

    太神了,专门写一篇题解 qwq 简要题意:给你 \(R\) 个红球和 \(B\) 个蓝球,你要把它们放到 \(K\) 个箱子里,要求没有两个箱子完全相同(即两种球个数就相同),求 \(K\) 的最大值 ...

  2. POJ2135:Farm Tour——题解

    http://poj.org/problem?id=2135 题目大意: 从1到n再回来,每条边只能走一次,问最短路. —————————————————— 如果不告诉我是费用流打死不会想这个…… 我 ...

  3. SPOJ1825/FTOUR2:Free tour II——包看得懂/看不懂题解

    http://www.spoj.com/problems/FTOUR2/en/ 题目大意:给一棵黑白染色的树,求边权和最大且经过黑点不超过K的路径. ———————————————————— 前排膜拜 ...

  4. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  5. 【SPOJ】1825. Free tour II(点分治)

    http://www.spoj.com/problems/FTOUR2/ 先前看了一会题解就自己yy出来了...对拍过后交tle.................. 自己造了下大数据........t ...

  6. 老oj2146 && Pku2135 Farm Tour

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

  7. 网络流(最大流) POJ 1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8628   Accepted: 3636 ...

  8. 《ACM国际大学生程序设计竞赛题解Ⅰ》——基础编程题

    这个专栏开始介绍一些<ACM国际大学生程序设计竞赛题解>上的竞赛题目,读者可以配合zju/poj/uva的在线测评系统提交代码(今天zoj貌似崩了). 其实看书名也能看出来这本书的思路,就 ...

  9. 2013 CSU校队选拔赛(1) 部分题解

    A: Decimal Time Limit: 1 Sec   Memory Limit: 128 MB Submit: 99   Solved: 10 [ Submit][ Status][ Web ...

随机推荐

  1. 2019-3-6-WPF-使用-SharpDX

    title author date CreateTime categories WPF 使用 SharpDX lindexi 2019-03-06 16:52:37 +0800 2018-4-20 9 ...

  2. 尖沙咀到底谁说的算?!--- CSS层叠

    前些天,我朋友发了这个段CSS我. //css *{ color:#fff ; } div{ color:#000 !important; } //html <div><span&g ...

  3. 一、苹果Assets.car文件解析图片

    一. https://blog.wxhbts.com/assets.html

  4. 记一次在mac上源码编译curl,使其支持NSS的过程

    一.背景 在一次学习https原理的过程中,希望客户端指定特定的cipher suites来抓包分析SSL/TLS的握手过程,就想到了使用curl工具,而不是使用浏览器. 接下来使用man curl找 ...

  5. 【转】SIP协议 会话发起协议

    转自:https://www.cnblogs.com/gardenofhu/p/7299963.html 会话发起协议(SIP)是VoIP技术中最常用的协议之一.它是一种应用层协议,与其他应用层协议协 ...

  6. 5.xml约束技术--------schema

    1.schema约束 (1)dtd语法:<!ELEMENT 元素名称 约束> (2)schema符合xml的语法,xml语句 (3)一个xml文件中只能有一个dtd,但是可以有多个sche ...

  7. python生成HTMl报告(unittest)

      Python3 使用HTMLTestRunner.py 报错ImportError: No module named 'StringIO'处理方法 HTMLTestRunner.py文件是基于Py ...

  8. python内建模块——collections模块

    在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter.deque.defaultdict.namedtuple和Ord ...

  9. 如何添加筛选器 (Reporting Services)

    如果您希望在计算或显示时包含或排除特定值,可向数据集.数据区域或组添加筛选器.在运行时应用筛选器的顺序为:先对数据集,再对数据区域,最后对组,并按照组层次结构自上而下的顺序.在表.矩阵或列表中,对行组 ...

  10. (4)Linux(ubuntu)下配置Opencv3.1.0开发环境的详细步骤

    Ubuntu下配置opencv3.1.0开发环境 1.最近工作上用到在Ubuntu下基于QT和opencv库开发应用软件(计算机视觉处理方面),特把opencv的配置过程详细记录,以供分享 2.步骤说 ...