题目

小胡同学是个热爱运动的好孩子。

每天晚上,小胡都会去操场上跑步,学校的操场可以看成一个由n个格子排成的一个环形,格子按照顺时针顺序从0 到n- 1 标号。

小胡观察到有m 个同学在跑步,最开始每个同学都在起点(即0 号格子),每个同学都有个步长ai,每跑一步,每个同学都会往顺时针方向前进ai 个格子。由于跑道是环形的,如果一个同学站在n-1 这个格子上,如果他前进一个格子,他就会来到0。

他们就这样在跑道上上不知疲倦地跑呀跑呀。小胡同学惊奇地发现,似乎有些格子永远不会被同学跑到,他想知道这些永远不会被任何一个同学跑到的格子的数目,你能帮帮他

吗?(我们假定所有同学都跑到过0 号格子)。

分析

首先对于一个人 i, 显然,那么它所能到达的格子一定是$gcd(ai,n) \(的倍数。
所以我们枚举n的约数d,如果有一个i,\)gcd(a_i,n)|d\(,说明所有\)gcd(j,n) = d$ 的格子都能被到达,答案加上 \(φ(\dfrac{n}{d})\) 即可。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const int N=55;
using namespace std;
int a[N],n,m,ans;
int gcd(int x,int y)
{
if(y==0) return x;
if(x<y) return gcd(y,x);
else return gcd(y, x%y);
}
int phi(int x)
{
int sum=x,e=x;
for(int i=2;i<=int(sqrt(e));i++)
{
if(x%i==0)
{
sum=sum/i*(i-1);
while(x%i==0) x/=i;
}
}
if(x>1)
{
sum=sum/x*(x-1);
}
return sum;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++) scanf("%d",&a[i]);
for(int i=1;i<=int(sqrt(n));i++)
{
if(n%i==0)
{
for(int j=1;j<=m;j++)
if(i%gcd(a[j],n)==0)
{
ans+=phi(n/i);
break;
}
for(int j=1;j<=m;j++)
if((n/i)%gcd(a[j],n)==0)
{
ans+=phi(i);
break;
}
}
}
cout<<n-ans<<endl;
}

【NOIP2016提高A组五校联考2】running的更多相关文章

  1. NOIP2016提高A组五校联考4总结

    坑爹的第一题,我居然想了足足3个小时,而且还不确定是否正确. 于是,我就在这种情况下心惊胆跳的打了,好在ac了,否则就爆零了. 第二题,树形dp,本来差点就想到了正解,结果时间不够,没打完. 第三题, ...

  2. 【NOIP2016提高A组五校联考4】square

    题目 分析 首先,设\(f_{i,j}\)表示最大的以(i,j)为左下角的正方形的边长. 转移显然,\(f_{i,j}=\max(f_{i-1,j},f_{i,j-1},f_{i-1,j-1})+1\ ...

  3. 【NOIP2016提高A组五校联考4】label

    题目 题目 20%算法 设\(f_{i,j}\)表示第i个节点选了j这个权值的方案数. 显然转移方程为,\[f_{i,j}=\Pi_{v=son(i)}(\sum_{k=1}^{j-k}f_{v,k} ...

  4. 【NOIP2016提高A组五校联考4】ksum

    题目 分析 发现,当子段[l,r]被取了出来,那么[l-1,r].[l,r+1]一定也被取了出来. 那么,首先将[1,n]放入大顶堆,每次将堆顶的子段[l,r]取出来,因为它是堆顶,所以一定是最大的子 ...

  5. NOIP2016提高A组五校联考3总结

    第一题,本来一开始就想到了数位dp,结果脑残地打了十几个转移方程,总是调试不出来,一气之下放弃了. 调第一题几乎调了整节比赛,第二第三都没它. 第二题连边找联通块. 第三题题解都打了三页,看都不想看. ...

  6. 【NOIP2016提高A组五校联考2】tree

    题目 给一棵n 个结点的有根树,结点由1 到n 标号,根结点的标号为1.每个结点上有一个物品,第i 个结点上的物品价值为vi. 你需要从所有结点中选出若干个结点,使得对于任意一个被选中的结点,其到根的 ...

  7. 【NOIP2016提高A组五校联考2】string

    题目 给出一个长度为n, 由小写英文字母组成的字符串S, 求在所有由小写英文字母组成且长度为n 且恰好有k 位与S 不同的字符串中,给定字符串T 按照字典序排在第几位. 由于答案可能很大,模10^9 ...

  8. NOIP2016提高A组五校联考2总结

    第一题用组合数各种乱搞,其恶心程度不一般.搞了很久才调对,比赛上出了一点bug,只拿了30分. 第二题我乱搞得出个错误的结论,本来自信满满60分,结果爆零了. 第三题,树形dp,在一开始的时候想到了, ...

  9. NOIP2016提高A组五校联考1总结

    第一题二分,在比赛上明明想到的方法,结果考虑的时候似乎漏了什么,被否决掉了. 只打了个水法,10分. 第二题,最长不上升子序列,原题,类似的题目做过两道,直接搞定. 第三题,一开始想了一种通过在树上打 ...

随机推荐

  1. Oracle 安装 RAC 11.2.0.4 centos7.4 -udev磁盘绑定/执行root脚本报错

    在centos 7.4上安装oracle rac 11.2.0.4 报错及相关解决 $ cat /etc/redhat-release CentOS Linux release 7.4.1708 (C ...

  2. Dojo入门:增强的Ajax功能

      随着Web技术的发展,RIA似乎已经成了主流,Ajax也随之成了不可或缺的部分.Ajax是异步的javascript和Xml,虽然现在很多交互的数据格式都不再严格的采用XML,但这种异步的操作却越 ...

  3. beanFactory 设计模式 Bean 生命周期

    写在前面的话 适用读者:有一定经验的,本文不适合初学者,因为可能不能理解我在说什么 文章思路:不会一开始就像别的博客文章那样,Bean 的生命周期,源码解读(给你贴一大堆的源码).个人觉得应该由问题驱 ...

  4. MySQL之视图学习

    MYSQL---视图 1.概述: ​ 视图是从一个或者多个表中导出的,视图的行为与表非常类似,但视图是一个虚拟表.在视图中用户可以使用SELECT语句查询数据,以及使用INSERT.UPDATE和DE ...

  5. 【GNN】图神经网络小结

    图神经网络小结 图神经网络小结 图神经网络分类 GCN: 由谱方法到空域方法 GCN概述 GCN的输出机制 GCN的不同方法 基于谱方法的GCN 初始 切比雪夫K阶截断: ChebNet 一阶Cheb ...

  6. dos2unix Linux解决编写脚本出现“%0D

    ## Linux解决编写脚本出现“%0D”# 安装# yum install -y dos2unix# 然后进行转化一下脚本,将其中的install_mysql.sh换成你的脚本# dos2unix ...

  7. linux挂载 mount

    挂载(mounting)是指由操作系统使一个存储设备(诸如硬盘.CD-ROM或共享资源)上的计算机文件和目录可供用户通过计算机的文件系统访问的一个过程. Linux系统下目录和磁盘是分开的,磁盘上的文 ...

  8. etcd数据单机部署

    单机下载 版本信息请参考https://github.com/etcd-io/etcd/releases 本次以最新版本3.4.1为例https://github.com/etcd-io/etcd/r ...

  9. luogu 黑题 P3724大佬

    #include<bits/stdc++.h> using namespace std; #define ll long long #define RG register #define ...

  10. Git-版本控制 (二)

    昨天我们成功安装了Git,并且成功配置了环境变量~如果想看之前步骤的童鞋,请戳这里Git-版本控制(一) 今天我们要做的事情是:创建版本库.  (觉得非高大尚的童鞋举个爪子 = . =) en~~~~ ...